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Two major security problems on today’s Internet are phishing and
spyware. They aim to extract valuable private information.

Existing security approaches, such as SSL, passwords, and one-time
tokens, don’t comprehensively protect private information in the face
of these attacks.

Multi-factor password-authenticated key exchange provides

I strong, mutual multi-factor authentication
(client-to-server and server-to-client) and

I confidentiality

even in the face of

I spyware and

I phishing

and has formal security arguments.
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Motivation

Private information is valuable
Prices on the black market (Symantec, April 2008)

bank accounts: $ 10 - 1000
credit cards: $ 1 - 20
identities: $ 1 - 15
eBay accounts: $ 1 - 8
email passwords: $ 4 - 30
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Motivation

How do attackers get this information?
Attack the server Attack the user

I hack into the server

I bribe an employee

I steal a backup tape

I steal a computer

I hack into a computer

I convince the user to tell
you their password
(phishing)

I install spyware on their
computer
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Motivation

Two security goals
1. Confidentiality

I establish a private channel using a shared secret key
I use public key cryptography to get a shared secret key

2. Authentication
I user and server must prove to each other that they are who they

say they are
I using multiple attributes, of different natures, can enhance

authentication robustness

Confidentiality and authentication are intertwined.

It’s no good having confidential communications with someone if it’s
the wrong someone.

,
Stebila, Udupi, Chang » Multi-Factor Password-Authenticated Key Exchange 5 / 27



Motivation

Authentication
Client-to-server:
User can show that

I she knows her password

Server-to-client:
Server can show that

I it looks like PayPal

I it has the domain name “paypal.com”

I a lock icon shows up in the browser because

I it has an SSL certificate
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Motivation

Existing approaches
I SSL + basic passwords

I SSL + client certificates

I SSL + multi-layer authentication

I password-based key agreement
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Motivation

Password-authenticated key exchange
Server and client prove to each other that they know the password
without disclosing any useful information about the password; they
also get a shared secret out at the end.

SSL + basic passwords:

Alice Bob

key exchange←−−−−−−−−−−−−→

↓ session key

SSL
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Motivation

Password-authenticated key exchange
Server and client prove to each other that they know the password
without disclosing any useful information about the password; they
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SSL + basic passwords:
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Motivation

Password-authenticated key exchange
Server and client prove to each other that they know the password
without disclosing any useful information about the password; they
also get a shared secret out at the end.

Password-authenticated key exchange:

Alice Bob

password password
pw. auth & key ex.←−−−−−−−−−−−−→

↓ session key
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Motivation

Password-authenticated key exchange
Server and client prove to each other that they know the password
without disclosing any useful information about the password; they
also get a shared secret out at the end.

Password-authenticated key exchange:

Alice Bob

password password
pw. auth & key ex.←−−−−−−−−−−−−→

↙ ↘
auth? X× ↓ session key auth? X×
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Multi-factor authentication

Multi-factor authentication
Use two passwords:

1. long-term, unchanging password

2. short-term, changing password

This technique is being adopted by

I banks,

I corporations (for remote access),

I government
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Multi-factor authentication

Multi-factor authentication
Use two passwords:

1. long-term, unchanging password: memorize

2. short-term, changing password: use an electronic password
token or sheet of paper
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Multi-factor authentication

Multi-factor authentication
People are already using multi-factor authentication but are using it
insecurely.

Basic principles:

1. Strong client-to-server multi-factor authentication.

2. Strong server-to-client multi-factor authentication.

3. Authentication secrets should never be directly divulged.

4. Secure against offline dictionary attacks.

5. The protocol should remain secure as long as at least one of the
factors is uncompromised.

6. Authentication and confidentiality should be tied intertwined.
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Multi-factor authentication

MFPAK
We use techniques like in password-authenticated key exchange
protocols to combine multiple factors securely and provide strong,
multi-factor mutual authentication.

There are two separate stages to our protocol:

1. User registration stage: the user sets up her password with the
server. This happens once, over a secure, authentic, out-of-band
channel.

2. Login stage: a user attempts to login to a server.
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Multi-factor authentication

Types of factors
Asymmetric / verifier-based:

I Server stores transformation of password called verifier.
I Provides protection against server database compromise – the

compromised data can’t immediately be used to impersonate a
user.

I Can only be changed by the user – suitable for long-term
passwords.

I Requires more computationally expensive protocols.

Symmetric / non-verifier-based:
I Client and server both store the password.

I Can be changed more easily – suitable for one-time passwords.
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Multi-factor authentication

MFPAK User Registration
Client C Server S

1. pwC,S ∈R Passwords
2. reC,S ∈R Responses
3. (V,W ) ← Gen(1κ)
4. γ′ = (H1(C, S, pwC,S))−1

5. V ′ = H2(C, S, pwC,S)⊕ V
6. V ′′ = H3(V )
7. τ ′ = (H4(C, S, reC,S))−1

8. C,γ′,W,V ′,V ′′,τ ′

−−−−−−−−−−−−−→
9. Store pwS [C] = 〈γ′, W, V ′, V ′′〉
10. Store reS [C] = τ ′

Figure 2: The user registration stage of the MFPAK protocol.

Efficiency. We consider group exponentiations, group inversions, and signature generation
and verification operations to be expensive, but group multiplication, addition, and hash func-
tion computation to be inexpensive. Compared to the one-factor protocol PAK-Z+, our protocol
MFPAK achieves two-factor security with almost the same efficiency. In particular, MFPAK
uses the same number expensive operations on the server side as PAK-Z+ (2 exponentiations, 1
signature verification), and only one more expensive operation on client side than PAK-Z+ (2
exponentiations, 1 signature generation, and 2 inversions (compared to the same but with only
1 inversion)). In many situations, such as e-commerce and online banking, the limiting factor
is the number of connections a server can handle, and so MFPAK can increase security without
substantial additional computational burden on the server.

4 Formal security analysis

Our general technique is to show that, if one factor remains uncompromised, then the difficulty
of breaking MFPAK is related to the difficulty of breaking the corresponding one of either PAK
or PAK-Z+.

More precisely, for each of the two factors (password and response), we describe a procedure
specified by a modifier M to transform an adversary A against MFPAK with the specified
factor uncompromised into an adversary A∗ against the corresponding one of the two underlying
protocols (PAK-Z+ and PAK, respectively). The transformations are such that, if the oracle
instance in MFPAK against which the Test query is directed is fresh in the first (resp, second)
factor, then the corresponding oracle instance is also fresh in the corresponding attack on PAK-
Z+ (resp., PAK).

Our formal argument proceeds by considering four cases. There are two cases correspond-
ing to the password being uncompromised and two cases corresponding to the response being
uncompromised, and for each of those one case is when U ∈ Clients and the other case is when
U ∈ Servers, where U is the user instance towards which the Test query is directed. We can then
combine the four cases probabilistically and obtain a security argument for the general setting.

In the main body of the paper, we provide the detailed description of the procedure for one
case and state the overall result. The other three cases follow in an analogous way and are
provided in Appendix B.

The four cases, and the sections in which the details appear, are as follows:

1. U∗ ∈ Clients, no CorruptPWCMFPAK(U∗, U ′∗) or CorruptPWSMFPAK(U ′∗, U∗) query (Sec-
tion 4.1),

2. U∗ ∈ Servers, no CorruptPWCMFPAK(U ′∗, U∗) query (Appendix B.1),
3. U∗ ∈ Clients, no CorruptReMFPAK query (Appendix B.2), and

9
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MFPAK Login
Client C Server S

1. x ∈R Zq

2. X = gx

3. γ = H1(C, S, pwC,S)
4. τ = H4(C, S, reC,S)
5. m = X · γ · τ
6. C,m−−−−−−→
7. Abort if ¬Acceptable(m)
8. y ∈R Zq

9. Y = gy

10. 〈γ′, W, V ′, V ′′〉 = pwS [C]
11. τ ′ = reS [C]
12. X = m · γ′ · τ ′
13. σ = Xy

14. sid = 〈C, S,m, Y 〉
15. k = H5(sid, σ, γ′, τ ′)
16. a′ = H6(sid, σ, γ′, τ ′)
17. a = a′ ⊕ V ′

18. Y,k,a,V ′′

←−−−−−−
19. σ = Y x

20. γ′ = γ−1

21. τ ′ = τ−1

22. sid = 〈C, S,m, Y 〉
23. Abort if k (= H5(sid, σ, γ′, τ ′)
24. k′ = H7(sid, σ, γ′, τ ′)
25. a′ = H6(sid, σ, γ′, τ ′)
26. V ′ = a′ ⊕ a
27. V = H2(C, S, pwC,S)⊕ V ′

28. Abort if V ′′ (= H3(V )
29. s = SignV (sid)

30. k′,s−−−−−−→
31. Abort if k′ (= H7(sid, σ, γ′, τ ′)
32. Abort if ¬VerifyW (sid, s)
33. sk = H8(sid, σ, γ′, τ ′) sk = H8(sid, σ, γ′, τ ′)

Figure 3: The login stage of the MFPAK protocol.

4. U∗ ∈ Servers, no CorruptReMFPAK query (Appendix B.3).

These four cases are combined into the overall result in Section 4.2.

4.1 Case 1: Attacking a client instance, first factor uncompromised

This case addresses impersonation of the server when the session being attacked is a client
instance and the first factor remains uncompromised.

The modifier M first uniformly at randomly guesses U∗ ∈R Clients and U ′∗ ∈R Servers as its
guess of who the adversary A will end up attacking. If the attacker ends up attacking the pair
of users the modifier has guessed, then we will show how to transform the attack into an attack
on PAK-Z+.
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Multi-factor authentication

Efficiency

Operation
PAK & PAK-Z+ MFPAK

Client Server Client Server
exponentiations 2|Is|+ 2|Ia| 2|Is|+ 2|Ia| 2 2
signature generation |Ia| 0 |Ia| 0
signature verification 0 |Ia| 0 |Ia|
total 2|Is|+ 3|Ia| 2|Is|+ 3|Ia| 2 + |Ia| 2 + |Ia|

|Is|: # of symmetric factors
|Ia|: # of asymmetric factors
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Security arguments

Formally modelling security
To show a protocol secure, we:

1. Model the powers of an adversary.

2. Define a game that the adversary has to win in order to break
security.

3. Show upper bounds on the probability that an adversary can win
the game (possibly related to hard computational problems).

,
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Security arguments

Formal models: be suspicious!
Formal security arguments (“security proofs”, “provable security”) do
not always mean a protocol is secure in practice.

I Does the model capture all possible forms of attack?

I Is the proof correct?

I Is the underlying “hard” computational problem actually hard?

I Are the parameter sizes appropriate given the proof?

I Does the implementation have flaws?

But formal security arguments can still be a good heuristic that the
design of the protocol is sound.

,
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Security arguments

Powers of the adversary
The adversary has complete control of the communication links and
can direct participants to perform certain actions.

The adversary can:

I modify, reorder, or delete protocol messages

I send protocol messages

I direct participants to perform certain actions

I compromise certain secrets

,
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Security arguments

Goal of the adversary
The adversary has two goals:

1. Break confidentiality:
determine the session key of any “fresh” session.

2. Break authentication:
impersonate one party in any “fresh” session.
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Security arguments

Security ingredients
Our security is based on three assumptions:

1. group where Computational Diffie-Hellman is hard
e.g., integers modulo a prime, elliptic curve groups

2. good hash functions (random oracle model)

3. secure digital signature scheme
e.g., RSA-OAEP, DSA, ECDSA
(but not long-term certificates / private keys)
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Security arguments

Session key security
We show that, for an adversary A running in time t and making at
most q queries,

Pr(A can break session key) ≤ O(q)
(

1
#Passwords

)
+ ϵ

where
ϵ ≈ O

(
q3 Pr(A can solve CDH)

)
.

Under the CDH assumption, ϵ is small.

With a 450-bit elliptic curve and 9-character passwords, an adversary
running in time 280 can succeed with advantage at most 2−25.

280 operations: 1 million computers with 2 GHz CPUs running for
15,000 years
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Security arguments

Authentication
The adversary’s goal with respect to authentication is to cause one
party A to accept authentication with B but for B to not have
completed his session.

We can show similar bounds on the ability of an adversary to break
authentication.
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Security arguments

Security properties
By using a model like this, the results above imply a variety of
desirable security properties:

I man-in-the-middle attacks are prevented

I offline dictionary attacks are prevented

I unknown key share attacks are prevented

I impersonation attacks are prevented

I forward secrecy
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Future directions
Integration with SSL/TLS and other protocols

I This could provide stronger authentication in web browsers.

I Challenge: MFPAK doesn’t fit within the message flow of TLS, so
we need to find creative ways around that.

Testing usability of authentication protocols
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Multi-factor password-authenticated
key exchange
provides

I strong, mutual multi-factor authentication
(client-to-server and server-to-client) and

I confidentiality

even in the face of

I spyware and

I phishing

and has formal security arguments.
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