
The cryptography
of Bitcoin
Dr Douglas Stebila

School of Mathematical Sciences &
School of Electrical Engineering and Computer Science

29 July 2014 • QUT Mathematics Society

http://www.douglas.stebila.ca/research/presentations/

Overview of Bitcoin

Digital cash

1982 1990s 2000s

•  invention of
digital cash

•  lots of
academic
research

•  ecash start-
up (failed)

•  more
academic
research

•  academics
give up on
digital cash

History of Bitcoin

https://blockchain.info/charts/market-price

2009 2010 2011 2012 2013 2014

What is Bitcoin?

Bitcoin is a decentralized distributed system
for establishing a public ledger of
transactions.

Basic idea

1.  There's a public ledger that everyone can
read with everyone's balance.

2.  Alice wants to pay Bob 3 units.
3.  Alice requests to put a transaction in the

ledger saying "Alice pays Bob 3 units."
4.  The maintainer of the ledger checks

(a) that Alice has big enough balance and
(b) that Alice really made the request,
then records the transaction in the ledger.

5.  Bob now has a higher balance.

Problems with the basic idea

No anonymity

How to verify someone
has authorization to
spend from Alice's
account?

Who maintains the
ledger?

•  Use public keys rather than
names.

•  Use transaction references
rather than accounts.

•  Use digital signatures to
demonstrate ownership of
currency from previous
transaction.

•  Distributed ledger: incentivize
community to maintain.

Transaction

"Alice pays Bob 3 units."
"Alice transfers control of 3 units to Bob."

Input:
• Previous transaction ID.
• Public key used in
previous transaction.

• Digital signature using
based on previous
transaction's public key.

Output:
• Bob's address
• # of units

•  Bitcoin address
= hash of public key

• Should include own
address to "make
change"

Transaction

Output:
address 320e1d53baf1c

value 2 BTC
address f23ea089a76b

value 1.5 BTC

Input: transaction 24d89c02e7ba1
public key

3048c9d000a11789ed
signature

9b8d910afa0b0476c

Block

Header
+

a list of transactions
…

Hash of
previous block

Hash of
transactions

puzzle difficulty

puzzle solution

Blockchain

A sequence of blocks = ledger of transactions

Which blockchain?
Blocks form a tree.
• Could have forks in the tree.
• Only the longest chain is considered to be valid by
the community.

Adding blocks to the chain

A block can only be
added to the blockchain
if the hash of the block
is small.

• Users try to generate a
block with a small
hash.
•  ("cryptographic puzzle")

• Updating the
blockchain requires
work but maintains the
public ledger.

• Motivation: whoever
constructs the block
includes one
transaction paying
themselves 25 BTC
("mining")

Why people agree on a single ledger

Bitcoin designed so everyone is motivated to agree
on a single public ledger

•  If I am trying to add a
block to the chain and I
do so, I'm motivated to
grow that chain
because that chain has
my reward.

•  If I am trying to add a
block to the chain but
someone else beats
me, the probability I'll
find the next block is
the same regardless of
whether I use the new
block or not.

Cryptographic ingredients

Bitcoin
ledger

Hash
functions

(SHA-256,
RIPEMD-160)

Cryptographic
puzzles

(Hashcash
with SHA-256)

Digital
signatures and

public keys
(ECDSA)

Hash functions

Hash functions

H : {0,1}* −> {0,1}λ

A public function H that is
•  fast and easy to compute
•  takes as input arbitrary-length binary strings
• outputs a message digest of fixed length

Security properties of hash functions

Collision-resistant

It should be hard to find
any two different inputs x1
and x2 such that
 H(x1) = H(x2).

One-way
(preimage resistant)

Given a value y, it should
be hard to find any input x
such that
 H(x) = y.

Second-preimage resistant

Given an input x1, it should
be hard to find a different
input x2 such that
 H(x1) = H(x2).

Building cryptographic hash functions

Cryptographic hash
functions need to take
arbitrary-sized input and
produce a fixed size output.

Idea: use a fixed-size
compression function
applied to multiple blocks of
the message.

Compression function

h

x1

x2 y

h : {0, 1}� ⇥ {0, 1}� ! {0, 1}�

Merkle–Damgård construction
•  Break message m into λ-bit blocks m1 || m2 || … || ml�
•  Add padding.
•  Input each block into compression function h along with chained

output; use standardized initialization vector IV to get started.

m1 m2 m3 . . . m`

m1 m2 m3 . . . m` pad

h h h
. . .

h h
IV H(m)

SHA-256
• Part of the SHA-2 family
standardized by NIST in
2001.

• Merkle–Damgård
construction.

• Compression function is
64 iterations of function
at right.

• No known attacks on
SHA-256 (yet) but
progress on simplified /
reduced-round versions. http://en.wikipedia.org/wiki/SHA-2

Randomness
• SHA-256 is not random: it is a deterministic function.

• Does it "look random"?

• How can we tell if a function is random?

http://xkcd.com/221/

Pseudorandomness

"Avalanche effect":
changing 1 bit of the
input should change
around half of the output
bits.

Golomb's postulates for
sequences.

• Assuming SHA-256 is
"random" is a stronger
assumption than
assuming it's collision-
resistant / one-way /
second-preimage-
resistant.

• No known attacks
distinguishing
SHA-256 from random.

Cryptographic puzzles

Cryptographic puzzle

A "moderately hard" computational task.

Example:
• Let H be a hash
function with 256 bits
of output.

• Find a value x such
that H(x) starts with
32 zeros.

Analysis:
•  Assume H is a random function

(output bits are independent and
identically distributed).

•  Then for each different input x
and each i, the probability that
the ith bit of H(x) is zero is ½.

•  The probability that the first 32
bits of H(x) are all zero is 1 / 232.

•  Need to try about 231 different x
values on average to find a
satisfying value. "difficulty"

Hashcash cryptographic puzzle

Example:
• Let H be a hash function with λ bits of
output.
•  Interpret output as an integer between 0 and 2λ−1

• Let s be a string.
• Let t be an integer.

• Find a value x such that H(s || x) ≤ t.

Puzzles in Bitcoin

Every miner is trying to
construct a block header
where

H(H(block header || solution))
≤ difficulty target

H = SHA-256

Keep trying random solutions
until one works

…

Hash of
previous block

Hash of
transactions

puzzle difficulty

puzzle solution

Reward
transaction
for miner
(25 BTC)

Bitcoin mining

Difficulty target adjusted every 2 weeks so
that average block generation time is 10
minutes.

Current mining rate:
• 127.6 quadrillion (approx. 256.8 hashes) per
second
• http://blockchain.info/stats, 2014/07/29

Mining pools

Since finding the solution
to a new block is so
unlikely individually,
miners work together in
pools.

If anyone in the pool finds
the solution to the puzzle,
the whole pool shares the
reward.

How to split the reward?
•  Just like Bitcoin mining, but

with a higher difficulty
target

•  Pool miners submit
whenever they find a hash
less than the pool difficulty
target

•  Even if it's not a valid
Bitcoin block, it still
demonstrates that you are
working hard

•  Reward split based on
number of submitted
hashes

scrypt

An alternative cryptographic puzzle used in other
cryptocurrencies e.g. Litecoin.

Bitcoin's puzzle is
computationally bound.

• Easy to run on low
memory GPUs or small
custom ASICs.

scrypt is
memory-bound.

• Needs large amount of
memory.

• Won't work well on
GPUs.

• Expensive to build
custom ASICs.

Digital signatures

Message authentication

How can we be sure Alice really sent a message?

Symmetric message
authentication codes:
• Alice and Bob share a
secret key k

• Alice computes
t = MAC(k, m)

• Alice sends (m, t)
• Bob checks if
t = MAC(k, m)

Problem: how do Alice
and Bob share a secret
key in the first place?

Problem: How can
anyone publicly verify
the authentication?

message
authentication

codes

•  secret key
cryptography

digital
signatures

•  public key
cryptography

Digital signatures
Key generation:
Alice generates a pair of
related keys:
• verification key vk

•  published in a phone
book / transaction record

• signing key sk
•  kept secret by Alice

Sign(sk, m):
Alice uses her signing
key sk to generate a
signature σ

Verify(vk, m, σ):
Anyone can use Alice's
verification key vk to
check if σ corresponds
to m

Security goals of digital signatures

Key recovery

It should be hard compute
Alice's signing key sk given
just her verification key vk.

Unforgeability

It should be hard to forge a
new valid message-
signature pair, given Alice's
verification key.

•  Forged message doesn't
have to be meaningful.

•  Even given copies of other
signatures.

•  Even if attacker can choose
which messages are signed.

Building a digital signature scheme

modular
arithmetic

elliptic
curves

groups

ECDSA
•  Elliptic

Curve
Digital
Signature
Algorithm

Modular arithmetic

"Clock" arithmetic

Example:
6 o'clock + 8 hours
 = 14 o'clock
 = 2 o'clock

Modular arithmetic

m: modulus

r = a mod m
•  r: the remainder you get

when you divide a by m

Example:
•  14 mod 12 = 2
•  6 + 8 mod 12 = 2
•  2 × 7 mod 12 = 2

+ 8 hours =

Modular exponentiation

Let g, x, and m be positive integers.

gx mod m represents multiplying g by itself
mod m for x times

• Can compute gx mod m efficiently even for
very large (500+ digit) values using square-
and-multiply algorithm.

Discrete logarithm problem

DLP for mod. exp.

1.  Let g and m be positive
integers.

2.  Let x be picked
randomly from 0
to m−1.

3.  Compute y = gx mod m.

4.  Given (g, m, y), find x.

Difficulty

Intuitively, DLP for modular
exponentiation is hard
because mod m makes
things wrap around in an
"unpredictable" way.

Primitive roots

Exponentiation mod 7 Primitive roots

Notice that some values of
g generate all the values
from 1 to m−1.

Such g are called
generators or primitive
roots.

g g2 g3 g4 g5 g6

1 1 1 1 1 1
2 4 1 2 4 1
3 2 6 4 5 1
4 2 1 4 2 1
5 4 6 2 3 1
6 1 6 1 6 1

Abelian groups
("because making things abstract makes them better")
An abelian group
(G, ×) is a set G and an
operation × such that:
• × is associative:
 a × (b × c) = (a × b) × c

• × has an identity 1 such
that
 1 × a = a = a × 1

• × has inverses: every a
has a b such that
 a × b = 1

• × is commutative:
 a × b = b × a

A cyclic group of order q
is a group G that has a
generator g such that g,
g2, g3, g4, …, gq−1 is
exactly the set of
elements of G.

Example:
•  integers modulo a prime
with multiplication are an
abelian group

Digital signatures from abelian groups

Let g be the generator of
a cyclic group of prime
order q.

Let H be a hash function.

Key generation:
• pick x randomly between
0 and q−1

• verification key: vk = gx

• signing key: sk = x

Sign(sk, m):
• pick k randomly between
0 and q−1

•  r = gk mod q
• s = k−1(H(m)+xr) mod q
• signature: σ = (r, s)

Verify(vk, m, σ):
• w = s−1 mod q
• a = H(m) × w
• b = r × w mod q
• v = ga × yb mod q
• valid if v = r

Attacking the signature scheme

Key generation:
•  pick x randomly between 0 and q−1
•  verification key: vk = gx

•  signing key: sk = x

Sign(sk, m):
•  pick k randomly between 0 and q−1
•  r = gk mod q
•  s = k−1(H(m)+xr) mod q
•  signature: σ = (r, s)

Verify(vk, m, σ):
•  w = s−1 mod q
•  a = H(m) × w
•  b = r × w mod q
•  v = ga × yb mod q
•  valid if v = r

If you could find x given
gx, you could recover the
signing key and forge
signatures.

•  "discrete logarithm
problem"

If you could find m1 ≠ m2
such that H(m1) = H(m2),
then you could confuse a
signature for m1 as a
signature for m2.

•  collision-resistance of H

Digital signatures from abelian groups

DSA: Modular arithmetic

• Group is integers modulo
a prime p

•  For high security, need:
•  p ≈ 22048
•  public keys are 2048 bits

long
•  signatures are 4096 bits long

ECDSA: Elliptic curves

• Group is set of points on a
discrete elliptic curve

•  For high security, need:
•  256-bit curve
•  public keys are 257 bits long
•  signatures are 512 bits long

•  ECDSA is faster and has
smaller values for same level
of security

Elliptic curve

An elliptic curve over the reals is the set of real
points (x, y) satisfying an equation of the form

y2 = x3 + ax + b
for fixed real numbers a and b.

Elliptic curve points as a group
• G = set of points on the curve
• operation = "point addition"
• can make equations from following geometric intuition

Elliptic curve scalar-point multiplication

• Let P be a point on the curve.
• kP represents adding P to itself k times.

Multiplicative groups Additive groups
multiplication: g × h addition: P + Q
squaring: g2 doubling: 2P
exponentiation: gx scalar-point multiplication: kP
square-and-multiply algorithm double-and-add algorithm

Discrete logarithm problem

Multiplicative groups

1.  Let g be a generator of
a cyclic group of prime
order q.

2.  Let x be picked
randomly from 0 to q−1.

3.  Compute y = gx.

4.  Given (g, q, y), find x.

Additive groups

1.  Let P be a generator of
a cyclic group of prime
order q.

2.  Let k be picked
randomly from 0 to q−1.

3.  Compute Q = kP.

4.  Given (P, q, Q), find k.

Difficulty of DLP

Best known algorithm
for DLP that works in
every group:

• Pollard's rho algorithm
≈ sqrt(q) operations

The properties of some
groups make it easier.
• mod p: number field
sieve
•  p ≈ 22048 & q ≈ 2210

=> 105-bit security

Elliptic curve groups:
• nothing better than
sqrt(q)
•  q ≈ 2256

=> 128-bit security

Elliptic curves over prime fields

Use modular arithmetic instead of real numbers:
y2 = x3 + ax + b (mod p)

http://arstechnica.com/security/2013/10/a-relatively-easy-to-
understand-primer-on-elliptic-curve-cryptography/2/

y

2
= x

3 � x+ 1 (mod 97)

Digital signatures in Bitcoin

Elliptic curve digital
signature algorithm
using the NIST p256
elliptic curve group.

• mod p ≈ 2256

Best known algorithm
for forging signatures
takes about 2128
operations.

•  ≈ 248 ≈ 1024 years for 10
million 4GHz computers

•  universe is ≈ 1010 years
old

Bitcoin transaction

Output:

address
320eed53baf1c

value 2 BTC
address f23eed89a76b

value 1.5 BTC

Input: transaction
24d89c02e7ba1

public key
3048c9d000a11789ed

signature
9b8d910aaa0b0476c

Public key:
• ECDSA public verification

key used in address from
previous transaction

Signature:
•  signature of transaction

using corresponding
ECDSA private signing key

Bitcoin address:
RIPEMD-160(
 SHA-256(ECDSA public key)

)

Recap

Cryptographic parts of Bitcoin ledger

Transactions Blockchain

Hash used to chain
transactions together
(SHA-256)
Only blocks in
longest chain
considered valid

Blocks

Hash used to collect
transactions together
Cryptographic hash
puzzle required to
make block valid
(Hashcash SHA-256)

Digital signatures for
transaction approval
(ECDSA)
Hashed public keys
for addresses

Breaking Bitcoin via cryptography

Forge transactions

Breaking elliptic curve
discrete logarithm with
classical computers needs
mathematical
breakthrough.

•  Become a mathematical
supergenius.

Quantum computers can
easily break ECDLP.

•  "Just" need to build a
quantum computer.

Mine faster

Figure out how to break
partial preimage resistance
/ pseudorandomness of
SHA-256.

•  Would break lots of other
stuff on the Internet.

Further study
MXB102 / MAB461

Abstract
Mathematical
Reasoning /
Discrete
Mathematics
•  introduction to

number theory
•  MAB461: last

offering right now
•  MXB102: annually

in semester 1
•  assumes no

background

INB355 / INN355
(unit code changing)

Cryptology and
Protocols
•  introduces major

areas of symmetric
and public key
cryptography

•  annually in
semester 2

•  not much maths or
computing
assumed

MXB251

Number Theory and
Abstract Algebra
•  mathematics

leading up to elliptic
curves

•  annually starting in
semester 2, 2015

•  assumes MXB102 /
MAB461 discrete
mathematics

MA54 students: counts
towards your 3rd year
maths requirements

MS01 students: part of discrete mathematics minor

Further reading

Bitcoin

Original paper by
Satoshi
Nakamoto:
https://bitcoin.org/
bitcoin.pdf

Bitcoin wiki:
https://en.bitcoin.it

Puzzles

Original
Hashcash paper
by Adam Back:
http://www.hashcash.org/
papers/hashcash.pdf

Hash functions
Digital signatures
Cryptography
Handbook of
Applied
Cryptography:
http://cacr.uwaterloo.ca/
hac/

Cryptography
by Nigel Smart:
http://www.cs.bris.ac.uk/
~nigel/Crypto_Book/

http://arstechnica.com/
security/2013/10/a-
relatively-easy-to-
understand-primer-on-
elliptic-curve-cryptography/

Elliptic curves

http://www.douglas.stebila.ca/research/presentations/

http://meetup.com/
bitcoinbrisbane

