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Overview of Bitcoin 



Digital cash 

1982 1990s 2000s 

•  invention of 
digital cash 

•  lots of 
academic 
research 

•  ecash start-
up (failed) 

•  more 
academic 
research 

•  academics 
give up on 
digital cash 



History of Bitcoin 

https://blockchain.info/charts/market-price 

2009 2010 2011 2012 2013 2014 



What is Bitcoin? 

Bitcoin is a decentralized distributed system 
for establishing a public ledger of 
transactions. 



Basic idea 

1.  There's a public ledger that everyone can 
read with everyone's balance. 

2.  Alice wants to pay Bob 3 units. 
3.  Alice requests to put a transaction in the 

ledger saying "Alice pays Bob 3 units." 
4.  The maintainer of the ledger checks 

(a) that Alice has big enough balance and  
(b) that Alice really made the request,  
then records the transaction in the ledger. 

5.  Bob now has a higher balance.  



Problems with the basic idea 

No anonymity 
 
 
How to verify someone 
has authorization to 
spend from Alice's 
account? 
 
Who maintains the 
ledger? 

•  Use public keys rather than 
names. 

•  Use transaction references 
rather than accounts. 

•  Use digital signatures to 
demonstrate ownership of 
currency from previous 
transaction. 

•  Distributed ledger: incentivize 
community to maintain. 



Transaction 

"Alice pays Bob 3 units." 
"Alice transfers control of 3 units to Bob." 

Input: 
• Previous transaction ID. 
• Public key used in 
previous transaction. 

• Digital signature using 
based on previous 
transaction's public key. 

Output: 
• Bob's address 
• # of units 

•  Bitcoin address  
= hash of public key 

• Should include own 
address to "make 
change" 



Transaction 

Output: 
address 320e1d53baf1c 

value 2 BTC 
address f23ea089a76b 

value 1.5 BTC 

Input: transaction 24d89c02e7ba1 
public key 

3048c9d000a11789ed 
signature 

9b8d910afa0b0476c 



Block 

Header  
+  

a list of transactions 
… 

Hash of 
previous  block 

Hash of 
transactions 

puzzle difficulty 

puzzle solution 



Blockchain 

A sequence of blocks = ledger of transactions 



Which blockchain? 
Blocks form a tree. 
• Could have forks in the tree. 
• Only the longest chain is considered to be valid by 
the community. 



Adding blocks to the chain 

A block can only be 
added to the blockchain 
if the hash of the block 
is small. 
 
• Users try to generate a 
block with a small 
hash.   
•  ("cryptographic puzzle") 

• Updating the 
blockchain requires 
work but maintains the 
public ledger. 

• Motivation: whoever 
constructs the block 
includes one 
transaction paying 
themselves 25 BTC 
("mining") 



Why people agree on a single ledger 

Bitcoin designed so everyone is motivated to agree 
on a single public ledger 

•  If I am trying to add a 
block to the chain and I 
do so, I'm motivated to 
grow that chain 
because that chain has 
my reward. 

•  If I am trying to add a 
block to the chain but 
someone else beats 
me, the probability I'll 
find the next block is 
the same regardless of 
whether I use the new 
block or not. 



Cryptographic ingredients 

Bitcoin 
ledger 

Hash 
functions 

(SHA-256, 
RIPEMD-160) 

Cryptographic 
puzzles 

(Hashcash 
with SHA-256) 

Digital 
signatures and 

public keys 
(ECDSA) 



Hash functions 



Hash functions 

H : {0,1}* −> {0,1}λ 
 

A public function H that is 
•  fast and easy to compute 
•  takes as input arbitrary-length binary strings 
• outputs a message digest of fixed length 



Security properties of hash functions 

Collision-resistant 

It should be hard to find 
any two different inputs x1 
and x2 such that  
    H(x1) = H(x2). 

One-way 
(preimage resistant) 

Given a value y, it should 
be hard to find any input x 
such that  
    H(x) = y. 

Second-preimage resistant 

Given an input x1, it should 
be hard to find a different 
input x2 such that  
    H(x1) = H(x2). 



Building cryptographic hash functions 

Cryptographic hash 
functions need to take 
arbitrary-sized input and 
produce a fixed size output. 

Idea: use a fixed-size 
compression function 
applied to multiple blocks of 
the message. 

Compression function 

h

x1

x2 y

h : {0, 1}� ⇥ {0, 1}� ! {0, 1}�



Merkle–Damgård construction 
•  Break message m into λ-bit blocks m1 || m2 || … || ml�
•  Add padding. 
•  Input each block into compression function h along with chained 

output; use standardized initialization vector IV to get started. 

m1 m2 m3 . . . m`

m1 m2 m3 . . . m` pad

h h h
. . .

h h
IV H(m)



SHA-256 
• Part of the SHA-2 family 
standardized by NIST in 
2001. 

• Merkle–Damgård 
construction. 

• Compression function is 
64 iterations of function 
at right. 

• No known attacks on 
SHA-256 (yet) but 
progress on simplified / 
reduced-round versions. http://en.wikipedia.org/wiki/SHA-2 



Randomness 
• SHA-256 is not random: it is a deterministic function. 

• Does it "look random"? 

• How can we tell if a function is random? 

http://xkcd.com/221/ 



Pseudorandomness 

"Avalanche effect": 
changing 1 bit of the 
input should change 
around half of the output 
bits. 
 
Golomb's postulates for 
sequences. 
 

• Assuming SHA-256 is 
"random" is a stronger 
assumption than 
assuming it's collision-
resistant / one-way / 
second-preimage-
resistant. 

• No known attacks 
distinguishing 
SHA-256 from random. 



Cryptographic puzzles 



Cryptographic puzzle 

A "moderately hard" computational task. 

Example:  
• Let H be a hash 
function with 256 bits 
of output.   

• Find a value x such 
that H(x) starts with  
32 zeros. 

Analysis: 
•  Assume H is a random function 

(output bits are independent and 
identically distributed).  

•  Then for each different input x 
and each i, the probability that 
the ith bit of H(x) is zero is ½. 

•  The probability that the first 32 
bits of H(x) are all zero is 1 / 232. 

•  Need to try about 231 different x 
values on average to find a 
satisfying value. "difficulty" 



Hashcash cryptographic puzzle 

Example:  
• Let H be a hash function with λ bits of 
output. 
•  Interpret output as an integer between 0 and 2λ−1 

• Let s be a string. 
• Let t be an integer. 

• Find a value x such that H(s || x) ≤ t. 



Puzzles in Bitcoin 

Every miner is trying to 
construct a block header 
where  
 
H(H(block header || solution))  
≤ difficulty target 
 
H = SHA-256 
 
Keep trying random solutions 
until one works 

… 

Hash of 
previous  block 

Hash of 
transactions 

puzzle difficulty 

puzzle solution 

Reward 
transaction 
for miner 
(25 BTC) 



Bitcoin mining 

Difficulty target adjusted every 2 weeks so 
that average block generation time is 10 
minutes. 
 
Current mining rate: 
• 127.6 quadrillion (approx. 256.8 hashes) per 
second 
• http://blockchain.info/stats, 2014/07/29  



Mining pools 

Since finding the solution 
to a new block is so 
unlikely individually, 
miners work together in 
pools. 
 
If anyone in the pool finds 
the solution to the puzzle, 
the whole pool shares the 
reward. 

How to split the reward? 
•  Just like Bitcoin mining, but 

with a higher difficulty 
target 

•  Pool miners submit 
whenever they find a hash 
less than the pool difficulty 
target 

•  Even if it's not a valid 
Bitcoin block, it still 
demonstrates that you are 
working hard 

•  Reward split based on 
number of submitted 
hashes 



scrypt 

An alternative cryptographic puzzle used in other 
cryptocurrencies e.g. Litecoin. 

Bitcoin's puzzle is 
computationally bound. 

• Easy to run on low 
memory GPUs or small 
custom ASICs. 

scrypt is  
memory-bound. 

• Needs large amount of 
memory. 

• Won't work well on 
GPUs. 

• Expensive to build 
custom ASICs. 



Digital signatures 



Message authentication 

How can we be sure Alice really sent a message? 

Symmetric message 
authentication codes: 
• Alice and Bob share a 
secret key k 

• Alice computes  
t = MAC(k, m) 

• Alice sends (m, t) 
• Bob checks if 
t = MAC(k, m) 

Problem: how do Alice 
and Bob share a secret 
key in the first place? 

Problem: How can 
anyone publicly verify 
the authentication? 



message 
authentication 

codes 

•  secret key 
cryptography 

digital 
signatures 

•  public key 
cryptography 



Digital signatures 
Key generation: 
Alice generates a pair of 
related keys: 
• verification key vk 

•  published in a phone 
book / transaction record 

• signing key sk 
•  kept secret by Alice 

Sign(sk, m): 
Alice uses her signing 
key sk to generate a 
signature σ 

Verify(vk, m, σ): 
Anyone can use Alice's 
verification key vk to 
check if σ corresponds 
to m  



Security goals of digital signatures 

Key recovery 

It should be hard compute 
Alice's signing key sk given 
just her verification key vk. 

Unforgeability 

It should be hard to forge a 
new valid message-
signature pair, given Alice's 
verification key. 

•  Forged message doesn't 
have to be meaningful. 

•  Even given copies of other 
signatures. 

•  Even if attacker can choose 
which messages are signed. 



Building a digital signature scheme 

modular 
arithmetic 

elliptic 
curves 

groups 

ECDSA 
•  Elliptic  

Curve  
Digital  
Signature  
Algorithm 



Modular arithmetic 

"Clock" arithmetic 

Example: 
6 o'clock + 8 hours  
  = 14 o'clock 
  =   2 o'clock 

Modular arithmetic 

m: modulus 
 
r = a mod m  
•  r: the remainder you get 

when you divide a by m 
 
Example: 
•  14 mod 12 = 2 
•  6 + 8 mod 12 = 2 
•  2 × 7 mod 12 = 2 

+ 8 hours = 



Modular exponentiation 

Let g, x, and m be positive integers. 

gx mod m represents multiplying g by itself 
mod m for x times 

• Can compute gx mod m efficiently even for 
very large (500+ digit) values using square-
and-multiply algorithm. 



Discrete logarithm problem 

DLP for mod. exp. 

1.  Let g and m be positive 
integers. 

2.  Let x be picked 
randomly from 0  
to m−1. 

3.  Compute y = gx mod m. 

4.  Given (g, m, y), find x. 

Difficulty 

Intuitively, DLP for modular 
exponentiation is hard 
because mod m makes 
things wrap around in an 
"unpredictable" way. 



Primitive roots 

Exponentiation mod 7 Primitive roots 

Notice that some values of 
g generate all the values 
from 1 to m−1. 

Such g are called 
generators or primitive 
roots. 

g g2 g3 g4 g5 g6 

1 1 1 1 1 1 
2 4 1 2 4 1 
3 2 6 4 5 1 
4 2 1 4 2 1 
5 4 6 2 3 1 
6 1 6 1 6 1 



Abelian groups 
("because making things abstract makes them better") 
An abelian group  
(G, ×) is a set G and an 
operation × such that: 
• × is associative:  
  a × (b × c) = (a × b) × c 

• × has an identity 1 such 
that  
  1 × a = a = a × 1 

• × has inverses: every a 
has a b such that  
  a × b = 1 

• × is commutative: 
  a × b = b × a 

A cyclic group of order q 
is a group G that has a 
generator g such that g, 
g2, g3, g4, …, gq−1 is 
exactly the set of 
elements of G.  
 
Example: 
•  integers modulo a prime 
with multiplication are an 
abelian group 



Digital signatures from abelian groups 

Let g be the generator of 
a cyclic group of prime 
order q. 
 
Let H be a hash function. 
 
Key generation: 
• pick x randomly between 
0 and q−1 

• verification key: vk = gx 

• signing key: sk = x 

Sign(sk, m): 
• pick k randomly between 
0 and q−1 

•  r = gk mod q 
• s = k−1(H(m)+xr) mod q 
• signature: σ = (r, s) 

Verify(vk, m, σ): 
• w = s−1 mod q 
• a = H(m) × w 
• b = r × w mod q 
• v = ga × yb mod q 
• valid if v = r 



Attacking the signature scheme 

Key generation: 
•  pick x randomly between 0 and q−1 
•  verification key: vk = gx 

•  signing key: sk = x 
 
Sign(sk, m): 
•  pick k randomly between 0 and q−1 
•  r = gk mod q 
•  s = k−1(H(m)+xr) mod q 
•  signature: σ = (r, s) 
 
Verify(vk, m, σ): 
•  w = s−1 mod q 
•  a = H(m) × w 
•  b = r × w mod q 
•  v = ga × yb mod q 
•  valid if v = r 

If you could find x given 
gx, you could recover the 
signing key and forge 
signatures. 

•  "discrete logarithm 
problem" 

If you could find m1 ≠ m2 
such that H(m1) = H(m2), 
then you could confuse a 
signature for m1 as a 
signature for m2. 

•  collision-resistance of H 



Digital signatures from abelian groups 

DSA: Modular arithmetic 

• Group is integers modulo 
a prime p 

•  For high security, need: 
•  p ≈ 22048 
•  public keys are 2048 bits 

long 
•  signatures are 4096 bits long 

ECDSA: Elliptic curves 

• Group is set of points on a 
discrete elliptic curve 

•  For high security, need: 
•  256-bit curve 
•  public keys are 257 bits long 
•  signatures are 512 bits long 

•  ECDSA is faster and has 
smaller values for same level 
of security 



Elliptic curve 

An elliptic curve over the reals is the set of real 
points (x, y) satisfying an equation of the form 

y2 = x3 + ax + b 
for fixed real numbers a and b. 



Elliptic curve points as a group 
• G = set of points on the curve 
• operation = "point addition" 
• can make equations from following geometric intuition 



Elliptic curve scalar-point multiplication 

• Let P be a point on the curve. 
• kP represents adding P to itself k times. 

Multiplicative groups Additive groups 
multiplication: g × h addition: P + Q 
squaring: g2 doubling: 2P 
exponentiation: gx scalar-point multiplication: kP 
square-and-multiply algorithm double-and-add algorithm 



Discrete logarithm problem 

Multiplicative groups 

1.  Let g be a generator of 
a cyclic group of prime 
order q. 

2.  Let x be picked 
randomly from 0 to q−1. 

3.  Compute y = gx. 

4.  Given (g, q, y), find x. 

Additive groups 

1.  Let P be a generator of 
a cyclic group of prime 
order q. 

2.  Let k be picked 
randomly from 0 to q−1. 

3.  Compute Q = kP. 

4.  Given (P, q, Q), find k. 



Difficulty of DLP 

Best known algorithm 
for DLP that works in 
every group: 

• Pollard's rho algorithm  
≈ sqrt(q) operations 

The properties of some 
groups make it easier. 
• mod p: number field 
sieve 
•  p ≈ 22048 & q ≈ 2210 

=> 105-bit security 

Elliptic curve groups: 
• nothing better than 
sqrt(q) 
•  q ≈ 2256 

=> 128-bit security 



Elliptic curves over prime fields 

Use modular arithmetic instead of real numbers: 
y2 = x3 + ax + b (mod p) 

http://arstechnica.com/security/2013/10/a-relatively-easy-to-
understand-primer-on-elliptic-curve-cryptography/2/  

y

2
= x

3 � x+ 1 (mod 97)



Digital signatures in Bitcoin 

Elliptic curve digital 
signature algorithm 
using the NIST p256 
elliptic curve group. 

• mod p ≈ 2256 

Best known algorithm 
for forging signatures 
takes about 2128 
operations. 

•  ≈ 248 ≈ 1024 years for 10 
million 4GHz computers 

•  universe is ≈ 1010 years 
old 



Bitcoin transaction 

Output: 

address 
320eed53baf1c 

value 2 BTC 
address f23eed89a76b 

value 1.5 BTC 

Input: transaction 
24d89c02e7ba1 

public key 
3048c9d000a11789ed 

signature 
9b8d910aaa0b0476c 

Public key: 
• ECDSA public verification 

key used in address from 
previous transaction 

Signature: 
•  signature of transaction 

using corresponding 
ECDSA private signing key 

Bitcoin address: 
RIPEMD-160( 
    SHA-256(ECDSA public key) 

) 



Recap 



Cryptographic parts of Bitcoin ledger 

Transactions Blockchain 

Hash used to chain 
transactions together 
(SHA-256) 
Only blocks in 
longest chain 
considered valid 

Blocks 

Hash used to collect 
transactions together 
Cryptographic hash 
puzzle required to 
make block valid 
(Hashcash SHA-256) 

Digital signatures for 
transaction approval 
(ECDSA) 
Hashed public keys 
for addresses 
 



Breaking Bitcoin via cryptography 

Forge transactions 

Breaking elliptic curve 
discrete logarithm with 
classical computers needs 
mathematical 
breakthrough. 

•  Become a mathematical 
supergenius. 

Quantum computers can 
easily break ECDLP. 

•  "Just" need to build a 
quantum computer. 

Mine faster 

Figure out how to break 
partial preimage resistance 
/ pseudorandomness of 
SHA-256. 

•  Would break lots of other 
stuff on the Internet. 



Further study 
MXB102 / MAB461 

Abstract 
Mathematical 
Reasoning / 
Discrete 
Mathematics 
•  introduction to 

number theory 
•  MAB461: last 

offering right now 
•  MXB102: annually 

in semester 1 
•  assumes no 

background 

INB355 / INN355 
(unit code changing) 

Cryptology and 
Protocols 
•  introduces major 

areas of symmetric 
and public key 
cryptography 

•  annually in 
semester 2 

•  not much maths or 
computing 
assumed 

MXB251 

Number Theory and 
Abstract Algebra 
•  mathematics 

leading up to elliptic 
curves 

•  annually starting in 
semester 2, 2015 

•  assumes MXB102 / 
MAB461 discrete 
mathematics 

MA54 students: counts 
towards your 3rd year 
maths requirements 

MS01 students: part of discrete mathematics minor 



Further reading 

Bitcoin 

Original paper by 
Satoshi 
Nakamoto:
https://bitcoin.org/
bitcoin.pdf  

 
Bitcoin wiki:
https://en.bitcoin.it  

Puzzles 

Original 
Hashcash paper 
by Adam Back: 
http://www.hashcash.org/
papers/hashcash.pdf  

Hash functions 
Digital signatures 
Cryptography 
Handbook of 
Applied 
Cryptography: 
http://cacr.uwaterloo.ca/
hac/  

 
Cryptography  
by Nigel Smart: 
http://www.cs.bris.ac.uk/
~nigel/Crypto_Book/  

http://arstechnica.com/
security/2013/10/a-
relatively-easy-to-
understand-primer-on-
elliptic-curve-cryptography/  

Elliptic curves 

http://www.douglas.stebila.ca/research/presentations/ 

http://meetup.com/
bitcoinbrisbane 


