Post-quantum key exchange
for the TLS protocol
from the ring learning with errors problem

Douglas Stebila i

Joint work with Joppe W. Bos (NXP Semiconductors), Microsoft:
Craig Costello & Michael Naehrig (Microsoft Research) x Resea rCh
Published at I[EEE Security & Privacy 2015

CROSSING Collaborative Research Centre, TU Darmstadt ¢ October 1, 2015

(1) Motivation

Contemporary cryptography

TLS-ECDHE-RSA-AES128-GCM-SHA256

Public-key
cryptography

Elliptic curve
RSA signatures Diffie—Hellman
key exchange

difficulty of elliptic
curve discrete
logarithms

difficulty of
factoring

Can be solved efficiently by a
large-scale quantum computer

Symmetric
cryptography

Building quantum computers

Complexity

QND measurements for error correction and control 2

Algorithms on multiple physical qubits

Operations on single physical qubits

Time

Devoret, Schoelkopf. Science 339:1169-1174, March 2013.

Building quantum computers

A Fault-tolerant quantum computation

Algorithms on multiple logical qubits

Operations on single logical qubits

' Logical memory with longer lifetime than physical qubits

Complexity

QND measurements for error correction and control

Algorithms on multiple physical qubits

Operations on single physical qubits

Time

Devoret, Schoelkopf. Science 339:1169-1174, March 2013.

Post-quantum / quantum-safe crypto

No known exponential quantum speedup:

Code-based Hash-based Multivariate Lattice-based

 McEliece Merkle NTRU

* learning with
errors
* ring-LWE

signatures » multivariate
* Sphincs quadratic

Lots of questions

‘ Better classical or quantum attacks on post-quantum schemes?

‘ What are the right parameter sizes?
‘ Are the key sizes sufficiently small?
‘ Can we do the operations sufficiently fast?

‘ How do we integrate them into the existing infrastructure?

Lots of questions

This talk: ring learning with errors

‘ Are the key sizes sufficiently small?

‘ Can we do the operations sufficiently fast?

‘ How do we integrate them into the existing infrastructure?

This talk: ring-LWE key agreement in TLS
: A
Premise: large-scale quantum computers don't

exist right now, but we want to protect today's
communications against tomorrow’s adversary.

& 4

Signatures still done with

traditional primitives
(RSA/ECDSA)

Key agreement done with

ring-LWE

* we only need authentication to
be secure now

 benefit: use existing RSA-based
PKI

(2) Learning with errors

Solving systems of linear equations

random secret
x4 4x1 71
le le le

Linear system problem: given blue, find red

Solving systems of linear equations

random secret
x4 4x1 71
le le le

Linear system problem: given blue, find red

Learning with errors problem

random secret small noise
x4 4x1 7x1 71
le le ZlS le

0

1
1
1
1
0
1

Learning with errors problem

random secret small noise
x4 4x1 7x1 71
le le ZlS le

LWE problem: given blue, find red

Toy example versus real-world example

7X4 640 x 256
ZlS Z4093

256

f_&

640

Ring learning with errors problem

random
7 x4
le

Each row is the cyclic
shift of the row above

Ring learning with errors problem

random
7 x4
le

Each row is the cyclic
shift of the row above

with a special wrapping rule:
X wraps to —x mod 13.

Ring learning with errors problem

random
7 x4
le

_ Each row is the cyclic

shift of the row above

with a special wrapping rule:
X wraps to —x mod 13.

So | only need to tell you the first row.

Ring learning with errors problem

+ 0-1x+ 1x2+ 1x3

Zl3[$]/<$4 + 1>

random

secret

small noise

Ring learning with errors problem
Zl3[$]/<$4 —+ 1>

random

secret

small noise

Ring-LWE problem: given blue, find red

Decision ring learning with errors problem
Zizlx]/(x* + 1)

+ 0-1x+ 1)X°2+ 1X° small noise
= 10 + 5x + 10x2 + 7Xx3 looks random

Decision ring-LWE problem: given blue,
distinguish green from random

Decisi . | . th bl with small
eCision ring learning witn errors prooiem secrets

Zos[x]/(z* 4 1)

random

+ 0-1x+ 1)X°2+ 1X° small noise

small secret

= 10 + 5x + 10x2 + 7Xx3 looks random

Decision ring-LWE problem: given blue,
distinguish green from random

Notation

® (¢: a prime
e n: a power of 2

e R =Z|X]/(X"™ + 1): ring of polynomials in X with integer
coefficients, polynomial reduction modulo X™ + 1

e Z,: integers modulo a prime ¢

o R, =7Z4,X]/(X™+1): ring of polynomials in X with integer
coefficients modulo ¢, polynomial reduction modulo X™ + 1

Decision ring learning with errors problem

Definition. Let n, R, q and R, be as above. Let x be a distribution

over R, and let s & Xx. Define O, s as the oracle which does the
following:

1. Sample a il U(R,), € & X,

2. Return (a,as+e€) € R, x R,.

The decision R-LWE problem for n,q, x is to distinguish O, s from
an oracle that returns uniform random samples from R, x R,. In
particular, if A is an algorithm, define the advantage

Advdrlwe (.A) _

n?Q’X

Pr (s & x; AP () = 1) — Pr (AU(R‘IXR‘I)(-) = 1)‘

Hardness of DRLWE For 146-bit classical security
> 73hi .
g
- Poly-time (quantum) reduction from _ Jerp y. .
approximate shortest-independent with larger coefficients.

vector problem (SIVP) on ideal
lattices in R to DRLWE. [LPR10
[LPR10] n=1024, q = 2321,

Practice: chi = discrete Gaussian with
- Assume the best way to solve parameter sigma = 8/sqrt(21r)
DRLWE is to solve LWE.
- Solving LWE generally involves a 1024
lattice reduction problem. Z232—1 [ZE]/ <aj T 1>

- Albrecht et al. (eprint 2015/046)
have hardness estimates. 1024 x 32 bits = 4 KiB

(3) Key agreement

Basic ring-LWE-DH key agreement (unauthenticated)

« Reformulation of Peikert's R-LWE KEM (PQCrypto 2014)

public: “big” a in Ry = Zy[X}/(x"+1)

Alice Bob
secret: secret:
random “small” s, e in R, random “small” s’, e’in R,
b=a+<s+e
>

b’=ass’+e’

shared secret: shared secret:
S*b’=se+(a*s’te)=sca-s’ bes’=(a*s+te)es=sca-s’

These are only approximately equal => need rounding

Basic rounding

- Each coefficient of the polynomial is an integer modulo g
- Treat each coefficient independently
- Round either to 0 or g/2

- Treat q/2 as 1
q/4 This works

most of the time:
prob. failure 1/219.

round
to0 0

Not good enough:
we need exact key
agreement.

3q/4

Better rounding (Peikert)

- Bob says which of two regions the value is in: ®, or ®

ql4

3q/4

3q/4

.
Better rounding (Peikert)

- If |u—v| = g/8, then this always works.

- For our parameters, probability |u—v| > /8
is less than 2-128000.

- Security not affected: revealing ‘, or f leaks no information

Exact ring-LWE-DH key agreement unauthenticated)

« Reformulation of Peikert's R-LWE KEM (PQCrypto 2014)

public: “big” a in Ry = Zy[X}/(x"+1)

Alice Bob
secret: secret:
random “small” s, e in R, random “small” s’, e’in R,
b=a+<s+e
>

b’=a-+s’+e’, 4, or &

shared secret: shared secret:
round(s ¢ b’) round(b ¢ s’)

- B
Ring-LWE-DH key agreement

Public parameters

Decision R-LWE parameters g, n, x

a(iU(Rq)

Alice Bob

s, e & x s’ e &y

b« as+e€ R, 2y W<+ as'+¢€ €R,

e’ & x
v+ bs'+e" € R,
v & dbl(v) € Raq
= ¢ (V),,, €1{0,1}"
ka < rec(2b's,c) € {0,1}" ke < [V],,, €{0,1}"

R
Ring-LWE-DH key agreement

Public parameters

Secure if decisionring learning
with errors problem is hard.

Decision ring-LWE is hard if a related
lattice shortest vector problem is hard.

v & dbl(v) € Raq
b ,c

= ¢ (V),,, €1{0,1}"
ka < rec(2b's,c) € {0,1}" ke < [V],,, €{0,1}"

(4) Integration into TLS

Client Server

Integration into TLS 1.2

-
>

ServerHello
New ciphersuite: ServertoyErchones
TLS-RLWE-SIG-AES128-GCM- corviicas Ruest
SHA256 -
. Ce?tificate*
- RSA / ECDSA signatures for e
au t h en tl CatIO N [ChangeCipherSpec]|
- Ring-LWE-DH for key compute keys
eXCh a n g e rmehel g accept
. CertificateVerify
¢ AES fOr d Uthenthated [ChangeCipherSpec]
en Cryptl on verify signatu;e compute keys
accept Finished

application data

. . : Client Server
Security within TLS 1.2 ‘
ServerHello
MOdel Certificate
. . . ServerKeyExchange
- authenticated and confidential CertificateRequest’
channel establishment (ACCE) ServerHelloDone
(Jager et al., Crypto 2012) -
Certificate*
ClientKeyExchange
TheOrem : CertificateVerify™
- signed ring-LWE ciphersuite is (CrangeCiphorspec] :
ACCE-secure if underlying primitives compute keys
(signatures, ring-LWE, authenticated Finished _
encryption) are secure ~ acept
- Interesting technical detail for ACCE Ccehrtlflc?a‘fvzrlfy
provable security people: need to move) [ChangeCipherSpec]
server’s signature to end of TLS e
handshake because oracle-DH verify signature compute keys
accept Finished

assumptions don’t hold for ring-LWE

application data

- -

(5) Implementation

OpenSSL stack

openssl apps

http_load

s_client, s_server

openssl — libss|

openssl — libcrypto

(Y I I T

Implementation in OpenSSL

No changes needed in openssl apps, http _load, mod_ssl, Apache
(beyond runtime configuration options)

Added ciphersuites in OpenSSL libssl

~N
/Wrapped RLWE key exchange into OpenSSL libcrypto

~

~
Basic RLWE implemented in standalone C

constant-time non-constant-time

. J

_ _/

Implementation aspect 1:
Polynomial arithmetic

- Polynomial multiplication in R, = Z,[x]/(x'%>4+1) done with Nussbaumer’s FFT:

If 2™ = rk, then

RX] _ (—<§~[f]1>) [X]
(X2"+1) (Xk-2)

- Rather than working modulo degree-1024 polynomial with coefficients in Z,,
work modulo:

- degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4
polynomial,

- or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials
whose coefficients are polynomials

c Or...

Implementation aspect 2:
Sampling discrete Gaussians

|
Dy - (x) = ge_m forx € Z,0 =~ 3.2,5 =8

- Security proofs require “small” elements sampled within statistical distance
2-128 of the true discrete Gaussian

- We use inversion sampling: precompute table of cumulative probabilities
- For us: 52 elements, size = 10000 bits

- Sampling each coefficient requires six 192-bit integer comparisons and there
are 1024 coefficients
- 51 +» 1024 for constant time

(6) Performance testing

Performance — math operations

Operation Cycles

constant-time non-constant-time
sample il X 1042700 668 000
FFT multiplication 342 800 —
FFT addition 1660 —
dbl(-) and crossrounding (-),, o 23500 21300
rounding ||, o 5500 3,700

reconciliation rec(-,) 14400 6 800

Performance — crypto operations

Operation | Client | Server _

R-LWE key generation 0.9ms 0.9ms
R-LWE Alice 0.5ms

R-LWE Bob 0.1ms
R-LWE total runtime 1.4ms 1.0ms
ECDH nistp256 (OpenSSL) 0.8ms 0.8ms

R-LWE 1.75x% slower than ECDH

constant-time implementation

Intel Core i5 (4570R), 4 cores @ 2.7 GHz
llvm 5.1 (clang 503.0.30) -O3

OpenSSL 1.0.1f

Performance at different security levels (time in us)
S 32 8 3

n 512 1024 2048
sample (constant time) 773 570 665
sample 587 446 652
FFT multiplication 81 168 699
RLWE key generation 1245 1022 1969
RLWE Alice 81 171 740
RLWE Bob 688 602 1392

Disclaimer: these are very preliminary results, and run on a different machine than previous 2 slides so
numbers aren’t directly comparable.
Programming by Shravan Mishra.

. B
TLS performance testing using Apache/http load

- Server: Apache web server with http_load: Multi-threaded
mod_ssl and custom OpenSSL HTTP/HTTPS request generator

- Prefork module for multi-threading

- Disable session resumption - Output:
- mean/min/max time to TCP
- Client: http _load with custom connect with server
OpenSSL - mean/min/max time to first HTTP

response from server (“latency”)

- total # fetches
- =>avg connections/second

Comments on using http load

- Client CPU power > server - Use multiple parallel executions
CPU power to ensure clients of http load
can fully load server - i.e., use both multi-threading within
- But don’t want to overload server http_load and multiple http_load
too much or you will get thrashing Processes
behaviour - Should use isolated network

- Want CPU around 95%

- http_load tells you latency to first
connection, keep increasing *Run long enough (100s)

number of clients until latency - Use multiple runs to collect
spikes, then back off slightly stdev of fetches across runs

Performance — In TLS

Ring-LWE adds

about 8 KiB to
handshake size

Connections per second

700 |

600 |

500 |

400 |

300 |

200

100

Vs

ECDHE-ECDSA

®
RLWE-ECDSA

:\\

R-LWE 1.25x slower than ECDH

1B

1 KiB 10KiB
HTTP payload size

100 KiB

Performance — in TLS

Ring-LWE adds

about 8 KiB to
handshake size

Connections per second

R-LWE 1.25x slower than ECDH

R-LWE 1.08x slower than ECDH

700 1

V=

ECDHE-ECDSA
600 | ‘\\
| @

°00 RLWE-ECDSA '\\
400 +
300 |
200 | ECDHE-RSA

® REWE-RSA- - -8 --"--C-C-CZCZCZ@TTZ------
100 +

0 : : :
1B 1 KiB 10 KiB

HTTP payload size

100 KiB

Performance — In TLS

Ring-LWE adds

about 8 KiB to
handshake size

Connections per second

700 1
V=
ECDHE-ECDSA
600 | ‘\\
| e
ou0 RLWE-ECDSA ’\\’
400 +
*HYBRID-ECDSA * \
300 |
200 | ECDHE-RSA .
® REWE-RSA- - -@ - — - - - - - — - ®@---"---:=--%
- - - - ¢ - --———-—---- ¢ - - ___"__C
HYBRID-RSA ¢
100 +
Hybrid = both ECDH and R-LWE key exchange
0 1 1 1
1B 1 KiB 10 KiB 100 KiB

HTTP payload size

(7) Summary

Ring-LWE ciphersuite with traditional signatures:
Key sizes: not too bad (8 KiB overhead)
Performance: small overhead (1.1-1.25%) within TLS.

Integration into TLS: requires reordering messages, but
otherwise okay.

Caveat: lattice-based assumptions less studied, algorithms

solving ring-LWE may improve, security parameter
estimation may evolve.

53

Future work

better attacks / » taking into account reduction tightness

: : « estimate based on best quantum algorithm for solving
parameter estimation ERIE

ring-LWE performance |[Sswasion

* alternative FFT

improvements « better sampling, ...

_ * basic DH directly from LWE
Other pOSt quantum key » eCK-secure key exchange

exchange algorith 853 |- error correcting codes?

post-quantum

authentication

Links

Full version
* http://eprint.iacr.org/2014/599

Standalone C
Implementation

* https://github.com/dstebila/rlwekex

Magma code:

* http://research.microsoft.com/en-
US/downloads/6bd592d7-cf8a-
4445-b736-
1fc39885dc6e/default.aspx

Integration into OpenSSL

* https://github.com/dstebila/openssi-
rlwekex

