
Exploring post-quantum cryptography in
Internet protocols

Douglas Stebila

https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/1356

https://eprint.iacr.org/2019/1447

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01
IBM Research Zurich • 2019-12-13

https://openquantumsafe.org/

https://github.com/open-quantum-safe/

https://www.douglas.stebila.ca/

https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/1447
https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01
https://github.com/open-quantum-safe/
https://github.com/open-quantum-safe/
https://www.douglas.stebila.ca/

2

Post-quantum crypto @ Waterloo

● UW involved in 6 NIST Round 2 submissions:
○ CRYSTALS-Kyber, FrodoKEM, NewHope, NTRU, SIKE; qTESLA

● Large team led by David Jao working on isogeny-based crypto
● Quantum cryptanalysis led by Michele Mosca
● CryptoWorks21 training program for quantum-resistant

cryptography

3

Motivating post-quantum cryptography

4

5

TLS (Transport Layer Security) protocol
a.k.a. SSL (Secure Sockets Layer)

• The “s” in “https”
• The most important cryptographic protocol on the Internet

— used to secure billions of connections every day.

6

Cryptographic building blocks

7

Public-key
cryptography

RSA signatures
Elliptic curve

Diffie–Hellman
key exchange

Symmetric
cryptography

AES
encryption

AES GCM
integrity

Based on
difficulty of
factoring

large
numbers

Based on difficulty of

computing discrete
logarithms

8

When will a large-scale quantum computer be built?

“I estimate a 1/7 chance of
breaking RSA-2048 by 2026
and a 1/2 chance by 2031.”

— Michele Mosca, University of Waterloo
https://eprint.iacr.org/2015/1075

9http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf

http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf

Post-quantum cryptography
a.k.a. quantum-resistant algorithms

Cryptography believed to be resistant to
attacks by quantum computers

Uses only classical (non-quantum)
operations to implement

Not as well-studied as current encryption
● Less confident in its security
● More implementation tradeoffs

Hash-based
& symmetric

Multivariate
quadratic

Code-based Lattice-
based

Elliptic curve
isogenies

10

Standardizing post-quantum cryptography

Aug. 2015 (Jan. 2016)

“IAD will initiate a
transition to quantum
resistant algorithms in
the not too distant
future.”

– NSA Information
Assurance Directorate,

Aug. 2015

11

NIST Post-quantum Crypto Project timeline
http://www.nist.gov/pqcrypto

12

Dec.
2016

Call for PQ
proposals

2022?-25?

PQ standards
ready

Nov.
2017

Submission
deadline

Mar.
2019

Round 2
deadline

Round 1:
69 schemes

1/3 signatures
2/3 public key encryption

Round 2:
26 schemes
9 signatures

17 public key encryption

Analysis: 2017-202x

???

Round 3?

http://www.nist.gov/pqcrypto

NIST Post-quantum Crypto Project timeline
http://www.nist.gov/pqcrypto

13

2031

Mosca – 1/2 chance
of breaking RSA-2048

2026

Mosca – 1/7 chance
of breaking RSA-2048

2035

EU commission
universal quantum

computer

Retroactive decryption:
record encrypted communication
now, decrypt it once you have a

quantum computer

Dec.
2016

Call for PQ
proposals

2022?-25?

PQ standards
ready

Nov.
2017

Submission
deadline

Mar.
2019

Round 2
deadline

http://www.nist.gov/pqcrypto

NIST Post-quantum Crypto Project timeline
http://www.nist.gov/pqcrypto

14

2031

Mosca – 1/2 chance
of breaking RSA-2048

2026

Mosca – 1/7 chance
of breaking RSA-2048

2035

EU commission
– universal quantum

computer

2022?-25?

PQ standards
ready

1995

SHA-1
standardized

2001

SHA-2
standardized

2005

SHA-1
weakened

16 years

Aug.
2017

Jan.
2017

Browsers stop accepting
SHA-1 certificates

http://www.nist.gov/pqcrypto

“Hybrid”

15

“Hybrid” or “composite” or “dual” or “multi-
algorithm” cryptography

● Use pre-quantum and post-
quantum algorithms together

● Secure if either one remains
unbroken

Why hybrid?
● Potential post-quantum security

for early adopters
● Maintain compliance with older

standards (e.g. FIPS)
● Reduce risk from uncertainty on

PQ assumptions/parameters

16

Hybrid ciphersuites

● Need PQ key exchange before we need PQ authentication because future quantum
computers could retroactively decrypt, but not retroactively impersonate

17

Key exchange Authentication

1 Hybrid traditional + PQ Single traditional

2 Hybrid traditional + PQ Hybrid traditional + PQ

3 Single PQ Single traditional

4 Single PQ Single PQ

Likely focus
for next 5-10 years

Hybrid key exchange and authentication to date

● Hybrid key exchange Internet-Drafts at IETF:
○ TLS 1.2: Schanck, Whyte, Zhang 2016; Amazon 2019
○ TLS 1.3: Schanck, Stebila 2017; Whyte, Zhang, Fluhrer, Garcia-Morchon 2017; Kiefer,

Kwiatkowski 2018; Stebila, Fluhrer, Gueron 2019
○ IPsec / IKEv2: Tjhai, Thomlinson, Bartlet, Fluhrer, Geest, Garcia-Morchon, Smyslov 2019

● Hybrid key exchange xperimental implementations:
○ Google CECPQ1, CECPQ2; Open Quantum Safe; CECPQ2b; …

● Hybrid X.509 certificates:
○ Truskovsky, Van Geest, Fluhrer, Kampanakis, Ounsworth, Mister 2018

18

Design issues for hybrid key exchange
in TLS 1.3

19

Douglas Stebila, Scott Fluhrer, Shay Gueron. Design issues for hybrid key exchange in TLS
1.3. Internet-Draft. Internet Engineering Task Force, July 2019. https://tools.ietf.org/html/draft-stebila-tls-
hybrid-design-01

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01

Goals for hybridization

1. Backwards compatibility
○ Hybrid-aware client, hybrid-aware server

○ Hybrid-aware client, non-hybrid-aware server

○ Non-hybrid-aware client, hybrid-aware server

2. Low computational overhead
3. Low latency
4. No extra round trips
5. No duplicate information

● How to negotiate algorithms
● How to convey cryptographic data

(public keys / ciphertexts)
● How to combine keying material

Design options

20

Negotiation: How many algorithms?

2 ≥ 2

21

Negotiation: How to indicate which algorithms to use

Negotiate each algorithm
individually

1. Standardize a name for each
algorithm

2. Provide a data structure for
conveying supported algorithms

3. Implement logic negotiating which
combination

Negotiate pre-defined
combinations of algorithms

1. Standardize a name for each
desired combination

● Can use existing negotiation
data structures and logic

22

Which option is preferred may
depend on how many algorithms are
ultimately standardized.

Conveying cryptographic data (public keys / ciphertexts)

1) Separate public keys
● For each supported algorithm,

send each public key / ciphertext in
its own parseable data structure

2) Concatenate public keys
● For each supported combination,

concatenate its public keys /
ciphertext into an opaque data
structure

#1 requires protocol and
implementation changes

#2 abstracts combinations into “just
another single algorithm”
But #2 can also lead to sending
duplicate values
● nistp256+bike1l1
● nistp256+sikep403
● nistp256+frodo640aes
● sikep403+frodo640aes 23

3x nistp256,
2x sikep403,
2x frodo640aes
public keys

Combining keying material

Top requirement: needs to provide
“robust” security:
● Final session key should be secure

as long as at least one of the
ingredient keys is unbroken

● (Most obvious techniques are fine,
though with some subtleties; see
Giacon, Heuer, Poettering PKC’18,
Bindel et al. PQCrypto 2019, … .)

● XOR keys
● Concatenate keys and use directly
● Concatenate keys then apply a

hash function / KDF
● Extend the protocol’s

“key schedule” with
new stages for each key

● Insert the 2nd key into an unused
spot in the protocol’s key schedule

24

Draft-00
@ IETF 104

draft-stebila-tls-hybrid-design-00

Contained a “menu” of design options
along several axes

1. How to negotiate which algorithms?
2. How many algorithms?
3. How to transmit public key shares?
4. How to combine secrets?

Feedback from working group:

● Avoid changes to key schedule
● Present one or two instantiations
● Specific feedback on some aspects

25

Draft-01
@ IETF 105

draft-stebila-tls-hybrid-design-01

Kept menu of design choices

Constructed two candidate
instantiations from menu for
discussion

1. Directly negotiate each hybrid
algorithm; separate key shares

2. Code points for pre-defined
combinations; concatenated key
shares

Additional KDF-based options for
combining keys

26

Emerging consensus?

● Combining keying material:
○ Consensus: (unambiguously) concatenate keys then apply hash function / KDF

● Number of algorithms: 2 vs ≥ 2:
○ TLS working group leaning to 2

● Negotiation: negotiate algorithms separately versus in combination:
○ All(?) implementations to date have negotiated pre-defined combinations
○ TLS working group leaning to “in combination”

● Conveying public keys: separately versus concatenated:
○ All(?) implementations to date have used concatenation
○ TLS working group leaning to (unambiguous) concatenation

27

28https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

https://openquantumsafe.org/
https://github.com/open-quantum-safe/

Open Quantum Safe Project

29

liboqs
key exchange / KEMs signatures

isogenies code-based lattice-based multi-variate
polynomial

hash-based /
symmetric

OpenSSL
• TLS 1.2
• TLS 1.3

BoringSSL
Open
SSH

Language
SDKs

C#, C++,
Go, Python

Apache
httpd nginx curl,

links
Open
VPN

C language library,
common API
• x86/x64 (Linux, Mac,

Windows)
• ARM (Android,

Linux)

Integration into forks of
widely used open-
source projects

Use in applications

PQClean

Standalone C
reference
implementations,
heavily tested

Chromium

OQS team

● Project leads
○ Douglas Stebila (Waterloo)
○ Michele Mosca (Waterloo)

● Industry collaborators
○ Amazon Web Services

○ Cisco Systems
○ evolutionQ
○ IBM Research

○ Microsoft Research

● Individual contributors

● Financial support
○ Government of Canada

§ NSERC Discoverry

§ Tutte Institute
○ Amazon Web Services

● In-kind contributions of
developer time from industry
collaborators

30

liboqs

● C library with common API for
post-quantum signature schemes
and key encapsulation
mechanisms

● MIT License
● Builds on Windows, macOS, Linux;

x86_64, ARM v8

● 43 key encapsulation mechanisms
from 7 NIST Round 2 candidates

● 52 signature schemes from 5 NIST
Round 2 candidates

31

List of algorithms

Key encapsulation mechanisms
● BIKE: BIKE1-L1-CPA, BIKE1-L3-CPA, BIKE1-L1-FO, BIKE1-

L3-FO
● FrodoKEM: FrodoKEM-640-AES, FrodoKEM-640-SHAKE,

FrodoKEM-976-AES, FrodoKEM-976-SHAKE, FrodoKEM-
1344-AES, FrodoKEM-1344-SHAKE

● Kyber: Kyber512, Kyber768, Kyber1024, Kyber512-90s,
Kyber768-90s, Kyber1024-90s

● NewHope: NewHope-512-CCA, NewHope-1024-CCA
● NTRU: NTRU-HPS-2048-509, NTRU-HPS-2048-677, NTRU-

HPS-4096-821, NTRU-HRSS-701
● SABER: LightSaber-KEM, Saber-KEM, FireSaber-KEM
● SIKE: SIDH-p434, SIDH-p503, SIDH-p610, SIDH-p751,

SIKE-p434, SIKE-p503, SIKE-p610, SIKE-p751, SIDH-p434-
compressed, SIDH-p503-compressed, SIDH-p610-
compressed, SIDH-p751-compressed, SIKE-p434-
compressed, SIKE-p503-compressed, SIKE-p610-
compressed, SIKE-p751-compressed

Signature schemes
● Dilithium: Dilithium2, Dilithium3, Dilithium4
● MQDSS: MQDSS-31-48, MQDSS-31-64
● Picnic: Picnic-L1-FS, Picnic-L1-UR, Picnic-L3-FS, Picnic-L3-UR,

Picnic-L5-FS, Picnic-L5-UR, Picnic2-L1-FS, Picnic2-L3-FS,
Picnic2-L5-FS

● qTesla: qTesla-p-I, qTesla-p-III
● SPHINCS+-Haraka: SPHINCS+-Haraka-128f-robust, SPHINCS+-

Haraka-128f-simple, SPHINCS+-Haraka-128s-robust,
SPHINCS+-Haraka-128s-simple, SPHINCS+-Haraka-192f-robust,
SPHINCS+-Haraka-192f-simple, SPHINCS+-Haraka-192s-robust,
SPHINCS+-Haraka-192s-simple, SPHINCS+-Haraka-256f-robust,
SPHINCS+-Haraka-256f-simple, SPHINCS+-Haraka-256s-robust,
SPHINCS+-Haraka-256s-simple

● SPHINCS+-SHA256: SPHINCS+-SHA256-128f-robust,
SPHINCS+-SHA256-128f-simple, SPHINCS+-SHA256-128s-
robust, SPHINCS+-SHA256-128s-simple, SPHINCS+-SHA256-
192f-robust, SPHINCS+-SHA256-192f-simple, SPHINCS+-
SHA256-192s-robust, SPHINCS+-SHA256-192s-simple,
SPHINCS+-SHA256-256f-robust, SPHINCS+-SHA256-256f-
simple, SPHINCS+-SHA256-256s-robust, SPHINCS+-SHA256-
256s-simple

● SPHINCS+-SHAKE256: SPHINCS+-SHAKE256-128f-robust,
SPHINCS+-SHAKE256-128f-simple, SPHINCS+-SHAKE256-128s-
robust, SPHINCS+-SHAKE256-128s-simple, SPHINCS+-
SHAKE256-192f-robust, SPHINCS+-SHAKE256-192f-simple,
SPHINCS+-SHAKE256-192s-robust, SPHINCS+-SHAKE256-192s-
simple, SPHINCS+-SHAKE256-256f-robust, SPHINCS+-
SHAKE256-256f-simple, SPHINCS+-SHAKE256-256s-robust,
SPHINCS+-SHAKE256-256s-simple

32

PQClean

● New, sister project to OQS
● Goal: standalone, high-quality C

reference implementations of PQ
algorithms
○ Lots of automated code analysis and

continuous integration testing

○ Builds tested on little-endian and big-endian

● MIT License and public domain

● Not a library, but easy to pull out
code that can be incorporated into
a library
○ liboqs consumes implementations from

PQClean

● In collaboration with Peter
Schwabe and team at Radboud
University, Netherlands

https://github.com/PQClean/PQClean
33

https://github.com/PQClean/PQClean

OpenSSL

● OQS fork of OpenSSL 1.0.2
○ PQ and hybrid key exchange in TLS 1.2

● OQS fork of OpenSSL 1.1.1
○ PQ and hybrid key exchange in TLS 1.3

○ PQ and hybrid certificates and signature authentication in TLS 1.3

● Can be readily used with applications that rely on OpenSSL with few/no
modifications

34

OQS demo: OpenSSL

35

BoringSSL

● OQS fork of BoringSSL (which is a fork of
OpenSSL)
○ PQ and hybrid key exchange in TLS 1.3

● After a few modifications, can be used with
Chromium!

36

OQS demo: Chromium with BoringSSL talking to Apache

37

OpenSSH

● OQS fork of OpenSSH
○ PQ and hybrid key exchange
○ PQ and hybrid signature authentication

38

OQS demo: OpenSSH

39

Using OQS

● All open source software available on GitHub
● Instructions for building on Linux, macOS, and Windows
● Docker images available for building and running OQS-reliant applications

○ Apache httpd
○ curl

○ nginx
○ OpenSSH

40

Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH

41

Eric Crockett, Christian Paquin, Douglas Stebila. Prototyping post-quantum and hybrid key exchange
and authentication in TLS and SSH. In NIST 2nd Post-Quantum Cryptography Standardization
Conference 2019. August 2019. https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/858

Case study 1: TLS 1.2 in Amazon s2n

● Multi-level negotiation following TLS 1.2 design style:
○ Top-level ciphersuite with algorithm family: e.g.

TLS_ECDHE_SIKE_ECDSA_WITH_AES_256_GCM_SHA384

○ Extensions used to negotiate parameterization within family:
§ 1 extension for which ECDH elliptic curve: nistp256, curve25519, …

§ 1 extension for which PQ parameterization: sikep403, sikep504, …

● Session key: concatenate session keys and apply KDF with public key/ciphertext as
KDF label

● Experimental results: successfully implemented using nistp256+{bike1l1, sikep503}

42

Case studies 2, 3, 4:
TLS 1.2 in OpenSSL 1.0.2
TLS 1.3 in OpenSSL 1.1.1
SSH v2 in OpenSSH 7.9

● Negotiate pairs of algorithms in pre-defined combinations
● Session key: concatenate session keys and use directly in key schedule

● Easy implementation, no change to negotiation logic

● Based on implementations in liboqs
○ KEMs: 9 of 17 (BIKE round 1, FrodoKEM, Kyber, LEDAcrypt, NewHope, NTRU, NTS (1 variant), Saber, SIKE)

○ Signature schemes: 6 of 9 (Dilithium, MQDSS, Picnic, qTesla (round 1), Rainbow, SPHINCS+)
43

1st circle: PQ only
2nd circle: hybrid ECDH

= success

= fixable by changing
implementation
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing
branch

FrodoKEM 976, 1344
• OpenSSL 1.0.2 / TLS 1.2:

too large for a pre-
programmed buffer size,
but easily fixed by
increasing one buffer size

• OpenSSL 1.1.1 / TLS 1.3:
same

NTS-KEM
• OpenSSL 1.0.2 / TLS 1.2:

theoretically within spec’s
limitation of 224 bytes, but
buffer sizes that large
caused failures we
couldn’t track down

• OpenSSL 1.1.1 / TLS 1.3:
too large for spec
(216-1 bytes)

• OpenSSH: theoretically
within spec but not within
RFC’s “SHOULD”, but
couldn’t resolve bugs 44

1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing
branch

TLS 1.3:
• Max certificate size: 224-1
• Max signature size: 216-1

OpenSSL 1.1.1:
• Max certificate size:

102,400 bytes, but
runtime enlargeable

• Max signature size: 214

45

1st circle: PQ only
2nd circle: hybrid RSA

= success

= fixable by changing
implementation
parameter

= would violate spec
or otherwise
unresolved error

† = algorithm on testing
branch

OpenSSH maximum
packet size: 218

46

Summary

● Several design choices for hybrid key exchange in network protocols on
negotiation and transmitting public keys, no consensus

● Protocols have size constraints which prevent some schemes from being used

● Implementations may have additional size constraints which affect some schemes,
which can be bypassed with varying degrees of success

47

Extensions and open questions

Remaining Round 2 candidates
● Welcome help in getting code into our

framework – either directly into liboqs
or via PQClean

Constraints in other parts of the protocol
ecosystem
● Other client/server implementations
● Middle boxes

Performance
● Latency and throughput in lab

conditions
● Latency in realistic network conditions

à la [Lan18]
Use in applications
● Tested our OpenSSL experiment with

Apache, nginx, links, OpenVPN, with
reasonable success

● More work to do:
S/MIME, more TLS clients, … 48

Benchmarking PQ crypto in TLS

49

Christian Paquin, Douglas Stebila, Goutam Tamvada. Benchmarking post-quantum cryptography in
TLS. November, 2019. https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

Prior Work

2016
Google, with
NewHope in
TLS 1.2

Google, with
“dummy

extensions”

2018 2019
Google and

Cloudflare, with
SIKE and NTRU-
HRSS in TLS 1.3

50

What if you
don’t have
billions of clients
and
millions of servers?

Emulate the
network

+ more control over
experiment parameters

+ easier to isolate
effects of network

characteristics

– loss in realism

51

Experiment setup

s_timer

s_timer

s_timer

s_timer

nginx

nginx

All programs were built against
OQS-OpenSSL 52

Key exchange

handshake latency
as a function of
packet loss rate

53

Authentication

handshake latency
as a function of
packet loss rate

54

Challenges in proving post-quantum key
exchanges based on key encapsulation

mechanisms

55

Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, Douglas Stebila. Challenges in
proving post-quantum key exchanges based on key encapsulation mechanisms. Technical report.
November 2019. https://eprint.iacr.org/2019/1356

https://eprint.iacr.org/2019/1356

Implicitly authenticated key exchange

Idea: Use static DH + ephemeral DH rather than signatures + ephemeral DH

Examples:
○ TLS 1.2 static DH

○ OPTLS (predecessor to TLS 1.3)

○ Signal X3DH handshake

○ QUIC original handshake

○ Many protocols in the academic literature

PQ: Use long-term KEM + ephemeral KEM rather than signatures + ephemeral KEM
● Potentially save space since many PQ signatures are bigger than PQ KEMs 56

DH is too awesome

Diffie–Hellman is very flexible:
● Different message flows:

serial versus parallel
● Key reuse
● Same cryptographic object for

different purposes
● Range of cryptographic

assumptions:
from plain CDH and DDH
up to interactive PRF-ODH

KEMs are not flexible:
● Encapsulator needs to know the

public key against which they’re
encapsulating

● Most PQ KEMs not secure against
key reuse without protection
(Fujisaki–Okamoto transform)

● No known efficient methods for
static–static KEM agreement (FO
transform gets in the way) 57

Case study: TLS 1.3

58

Client Server

Hello, ephemeral DH pk

Ephemeral DH pk,
certificate with long-term signing pk,

signature

Case study: TLS 1.3 implicitly authenticated DH

59

Client Server

Hello, ephemeral DH pk

Ephemeral DH pk,
certificate with long-term DH pk

Session key = H(ephemeral-ephemeral, ephemeral-static)

Case study: TLS 1.3 implicitly authenticated KEMs

60

Client Server

Hello, ephemeral KEM pk

Ephemeral KEM ciphertext,
certificate with long-term KEM pk

Session key = H(ephemeral-ephemeral, ephemeral-static)

Ciphertext for long-term KEM So we need an
extra round trip

Would like to use this
with the server’s long-
term KEM pk but don’t

know it yet

Idea: “split KEMs”

● Some LWE-based KEMs (Lindner–
Peikert/Ding style) have ciphertexts
part of which could be treated as a
public key

● So order of public key and
encapsulation could be partially
swapped or separated

61

LWE as a split KEM

● Some LWE-based KEMs (Lindner–
Peikert/Ding style) have ciphertexts
part of which could be treated as a
public key

● So order of public key and
encapsulation could be partially
swapped or separated

● Not a full solution: couldn’t figure
out how to achieve active (CCA)
security without FO transform

62

Wrapping up

63

Some questions
for adoption

● Hybrid key exchange:
2 or ≥ 2 algorithms?

● What level of
network
performance is
acceptable?

64

Some questions
for academia

● Is it safe to use an
IND-CPA KEM for
ephemeral key
exchange in TLS 1.3?

● Can CCA-secure split
KEMs be
instantiated?

65

Exploring post-quantum cryptography in
Internet protocols

Douglas Stebila

https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/1356

https://eprint.iacr.org/2019/1447

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01
IBM Research Zurich • 2019-12-13

https://openquantumsafe.org/

https://github.com/open-quantum-safe/

https://www.douglas.stebila.ca/

https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/1447
https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01
https://github.com/open-quantum-safe/
https://github.com/open-quantum-safe/
https://www.douglas.stebila.ca/

Appendix

67

Hybrid key encapsulation mechanisms and
authenticated key exchange

68

Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, Douglas Stebila. Hybrid key
encapsulation mechanisms and authenticated key exchange. In Jintai Ding, Rainer Steinwandt,
editors, Proc. 10th International Conference on Post-Quantum Cryptography (PQCrypto) 2019, LNCS.
Springer, May 2019. https://eprint.iacr.org/2019/858

https://eprint.iacr.org/2019/858

Safely combining KEMs

● How to safely combine into single KEM such that this hybrid preserves security,
as long as one of the two input schemes remains secure

69

KEM 1

c1 , K1

KEM 2

c2 , K2

Hybrid
KEM

c , K

Existing options

● XOR
○ K = K1 XOR K2

○ Preserves IND-CPA security but not IND-CCA security (mix and match attack)

● XOR with transcript (Giacon et al. PKC 2018)
○ K = H(K1 XOR K2, C1 || C2)
○ Preserves IND-CCA security if H is a random oracle

● Concatenation (Giacon et al. PKC 2018)
○ K = H(K1 || K2, C1 || C2)

○ Preserves IND-CCA security if H is a random oracle

70

The XOR-then-MAC Combiner

● Add MAC τ = MAC(c)

● Preserves IND-CCA security under the standard model assumption that MAC is
secure

● Protocols (e.g. TLS) often compute MAC over transcript anyways (may replace the
MAC here)

K || KMAC ← K1 XOR K2

c = (c1, c2 , $)

71

dualPRF Combiner

● dualPRF Security: both dPRF(k,·) and
dPRF(·,x) are pseudorandom functions

● Models concatenation-based TLS 1.3 hybrid
drafts

● HKDF is a dual PRF

72

K = PRF(dPRF(K1, K2),c)
c = (c1, c2)

dualPRF Combiner

73

ExtExp

K = PRF(dPRF(K1, K2),c)
c = (c1, c2)

Nested dualPRF Combiner

● dualPRF combiner with additional preprocessing step

● Inspired by the TLS 1.3 key schedule
○ Models TLS 1.3 hybrid draft by Schanck and Stebila

74

Ke = Ext(0, K1)

K = PRF(dPRF(Ke, K2),c)

Design issues for hybrid key exchange
in TLS 1.3

75

Douglas Stebila, Scott Fluhrer, Shay Gueron. Design issues for hybrid key exchange in TLS
1.3. Internet-Draft. Internet Engineering Task Force, July 2019. https://tools.ietf.org/html/draft-stebila-tls-
hybrid-design-01

https://tools.ietf.org/html/draft-stebila-tls-hybrid-design-01

Follows draft-whyte-qsh-tls13-06

NamedGroup enum for
supported_groups extension contains
“hybrid markers” with no pre-defined
meaning

Each hybrid marker points to a
mapping in an extension, which lists
which combinations the client
proposes; between 2 and 10 algorithms
permitted

Candidate Instantiation 1 – Negotiation

supported_groups:
hybrid_marker00, hybrid_marker01,
hybrid_marker02, secp256r1

HybridExtension:
• hybrid_marker00 →
secp256r1+sike123+ntru456
• hybrid_marker01 → secp256r1+sike123
• hybrid_marker02 →
secp256r1+ntru456

76

Server’s key shares:

● Respond with
NamedGroup = hybrid_markerXX

● Existing KeyShareServerHello only
permits one key share

● => Squeeze 2+ key shares into
single key share field by
concatenation

struct {
KeyShareEntry key_share<2..10>;

} HybridKeyShare;

Client’s key shares:

● Existing KeyShareClientHello
allows multiple key shares

● => Send 1 key share per algorithm
○ secp256r1, sike123, ntru456

● No changes required to data
structures or logic

Candidate Instantiation 1 – Conveying keyshares

77

Candidate
Instantiation 1 –
Combining keys

78

Follows draft-kiefer-tls-ecdhe-sidh-00,
Open Quantum Safe implementation, ...

New NamedGroup element
standardized for each desired
combination

No internal structure to new code
points

Candidate Instantiation 2 – Negotiation

79

KeyShareClientHello contains an entry for each code point listed in supported_groups

KeyShareServerHello contains a single entry for the chosen code point

KeyShareEntry for hybrid code points is an opaque string parsed with the following
internal structure:

struct {
KeyShareEntry key_share<2..10>;

} HybridKeyShare;

Candidate Instantiation 2 – Conveying keyshares

80

Candidate Instantiation 1

Adds new negotiation logic and
ClientHello extensions

Does not result in duplicate key shares
or combinatorial explosion of
NamedGroups

No change in negotiation logic or data
structures

No change to protocol logic:
concatenation of key shares and KDFing
shared secrets can be handled
“internally” to a method

Results in combinatorial explosion of
NamedGroups

Duplicate key shares will be sent

Candidate Instantiation 2

81

Benchmarking PQ crypto in TLS

82

Christian Paquin, Douglas Stebila, Goutam Tamvada. Benchmarking post-quantum cryptography in
TLS. November, 2019. https://eprint.iacr.org/2019/1447

https://eprint.iacr.org/2019/1447

Key exchange

handshake latency
as a function of packet

loss rate

higher network latency

83

Authentication

handshake latency
as a function of packet

loss rate

higher network latency

84

Data-centre-
to-data-centre

web page latency
as a function of

page size

85

Data-centre-
to-data-centre

web page latency
as a function of

page size

higher network
latency

86

Challenges in proving post-quantum key
exchanges based on key encapsulation

mechanisms

87

Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, Douglas Stebila. Challenges in
proving post-quantum key exchanges based on key encapsulation mechanisms. Technical report.
November 2019. https://eprint.iacr.org/2019/1356

https://eprint.iacr.org/2019/1356

88

89

Signal X3DH handshake

90

Signal
handshake
with KEMs

91

Signal
handshake
with
split KEMs

92

