
Making and breaking
implicitly authenticated

post-quantum key exchange
Douglas Stebila

Joint work with Peter Schwabe and Thom Wiggers
https://eprint.iacr.org/2020/534

Joint work with Nina Bindel and Shannon Veitch
https://eprint.iacr.org/2020/1288

CISPA • 2021-02-05

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2020/1288

2

Cryptography @ University of Waterloo

3

• UW involved in 4 NIST PQC Round 3 submissions:
• Finalists: CRYSTALS-Kyber, NTRU
• Alternates: FrodoKEM, SIKE

• UW involved in 4 NIST Lightweight Crypto Round 2 submissions: ACE, SPIX, SpoC,
WAGE

• Elliptic curves: David Jao, Alfred Menezes, (Scott Vanstone)
• Information theoretic cryptography: Doug Stinson
• Privacy-enhancing technologies: Ian Goldberg
• Quantum cryptanalysis: Michele Mosca
• Quantum cryptography: Norbert Lütkenhaus, Thomas Jennewein, Debbie Leung
• Gord Agnew, Vijay Ganesh, Guang Gong, Sergey Gorbunov, Anwar Hasan, Florian

Kerschbaum

4

Motivation

5

Authenticated key exchange

6

•Two parties establish a shared secret over a
public communication channel

Vast literature on AKE protocols

7

• Many security definitions capturing various adversarial
powers: BR, CK, eCK, …

• Different types of authentication credentials: public key,
shared secret key, password, identity-based, …

• Additional security goals: weak/strong forward secrecy,
key compromise impersonation resistance, post-compromise
security, …

• Additional protocol functionality: multi-stage, ratcheting, …
• Group key exchange
• Real-world protocols: TLS, SSH, Signal, IKE, ISO, EMV, …
• …

Explicit
authentication

Alice is assured that
only Bob would be

able to compute the
shared secret

8

Alice receives
assurance that she

really is talking to Bob

Implicit
authentication

Explicitly authenticated key exchange:
Signed Diffie–Hellman

9

Alice Bob

(pkA, skA) SIG.KeyGen() (pkB , skB) SIG.KeyGen()

obtain pkB obtain pkA

x $ {0, . . . , q � 1}
X g

x
X

y $ {0, . . . , q � 1}
Y g

y

�B SIG.Sign(skB , AkBkXkY)Y,�B

�A SIG.Sign(skA, AkBkXkY) �A

k H(sid, Y x) k H(sid,Xy)

application data

using authenticated encryption

Implicitly authenticated key exchange:
Double-DH

10

Alice Bob

skA $ {0, . . . , q � 1} skB $ {0, . . . , q � 1}
pkA g

skA pkB g
skB

obtain pkB obtain pkA

x $ {0, . . . , q � 1} y $ {0, . . . , q � 1}
X g

x
Y g

y
X

Y

k H(sid, pk
skA
B kY x) k H(sid, pk

skB
A kXy)

application data

using authenticated encryption

11

12

13

Public-key
cryptography

RSA signatures
Elliptic curve

Diffie–Hellman
key exchange

(X25519)

Symmetric
cryptography

AES
encryption

AES GCM
integrity

Based on difficulty

of computing
discrete logarithmsNot quantum

resistant!

Based on difficulty

of factoring large

numbers

Not quantum

resistant!

14https://globalriskinstitute.org/publications/quantum-threat-timeline/

https://globalriskinstitute.org/publications/quantum-threat-timeline/

Part 1:
Making implicitly authenticated
post-quantum key exchange
Peter Schwabe, Douglas Stebila, Thom Wiggers. Post-quantum TLS without
handshake signatures. In Proc. 27th ACM Conference on Computer and
Communications Security (CCS) 2020. ACM, November 2020.
https://eprint.iacr.org/2020/534

15

https://eprint.iacr.org/2020/534

TLS 1.3
handshake

Signed Diffie–Hellman

16

TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!

17

Problem
post-quantum

signatures
are big

18

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
GeMSS Multi-variate 352,180 32

19

Solution
use

post-quantum KEMs
for authentication

20

Key encapsulation mechanisms (KEMs)

21

An abstraction of Diffie–Hellman key exchange
<latexit sha1_base64="RDVfI7FP0yyVQqr+2G8wBIqhKDQ=">AAACQ3icbVDLSgNBEJz1bXxFPXoZjEIECbs5qEdRREGECEaFJITZSW8cMjO7zPSKYdnf8Gu8xn/wG7yJRwU3D8SoBQPV1d10TfmRFBZd98WZmJyanpmdm88tLC4tr+RX165tGBsOVR7K0Nz6zIIUGqooUMJtZIApX8KN3znu92/uwVgR6ivsRtBQrK1FIDjDTGrm3a1i1NmltrND621AS+uK4Z0NkvOTi7T0XUD3FHRa3NnKNf MFt+QOQP8Sb0QKZIRKM/9Rb4U8VqCRS2ZtzXMjbCTMoOAS0lw9thAx3mFtqGVUMwW2kQx+ltLtTGnRIDTZ00gH6s+NhClru8rPJgdWf/f64n+9WozBQSMROooRNB8eCmJJMaT9mGhLGOAouxlh3IjMK+V3zDCOWZhjVx6GVsc00LESCCrtx+X9DucvuS6XvL2Se1kuHB6NgpsjG2STFIlH9skhOSMVUiWcPJIn0iPPTs95dd6c9+HohDPaWSdjcD6/ALcUsLc=</latexit>

(pk, sk) KEM.KeyGen()

<latexit sha1_base64="XPVAcqpbuqaH8/jH2n2W0moLbT0=">AAACRHicbVDLSgNBEJz1bXxFPXoZjEICEnY9qEdRBEEEBZMISQizk944ZGZ2mekVw7Lf4dd41W/wH7yJNxE3D8EYCwaqq7vpmvIjKSy67qszNT0zOze/sJhbWl5ZXcuvb1RtGBsOFR7K0Nz6zIIUGiooUMJtZIApX0LN7572+7V7MFaE+gZ7ETQV62gRCM4wk1p5b6fIcY92S7TRAbS0oRje2SC5OLtMyz/FmeYssmkx6pZ2cq18wS27A9BJ4o1IgYxw1cp/NtohjxVo5JJZW/fcCJsJMyi4hDTXiC1EjHdZB+oZ1UyBbSaDr6V0N1PaNAhN9jTSgfp7I2HK2p7ys8mB2b+9vvhfrx5jcNRMhI5iBM2Hh4JYUgxpPyfaFgY4yl5GGDci80r5HTOMY5bm2JWHodUxDXSsBIJK+3F5f8OZJNX9sndQdq/3C8cno+AWyBbZJkXikUNyTM7JFakQTh7JE3kmL86z8+a8Ox/D0SlntLNJxuB8fQO5QrE8</latexit>

(ct, k) KEM.Encaps(pk)

<latexit sha1_base64="odAnpH0dxdWK5HcWBvymtpgGo+8=">AAACQnicbVDLSgNBEJz1bXxFPXoZjEIEibse1KP4AEGECEYDSQizk944ZGZ2mekVw7Kf4dd41Y/wF7yJVw9uHoKJFgxUV3fTNeVHUlh03TdnYnJqemZ2bj63sLi0vJJfXbu1YWw4VHgoQ1P1mQUpNFRQoIRqZIApX8Kd3znt9e8ewFgR6hvsRtBQrK1FIDjDTGrm97Y6tN4GtLSuGN7bILk8v0pLP8UZcBbZtGg7u5TjzlaumS +4JbcP+pd4Q1IgQ5Sb+a96K+SxAo1cMmtrnhthI2EGBZeQ5uqxhYjxDmtDLaOaKbCNpP+xlG5nSosGocmeRtpXf28kTFnbVX422Tc83uuJ//VqMQZHjUToKEbQfHAoiCXFkPZSoi1hgKPsZoRxIzKvlN8zwzhmWY5ceRxYHdFAx0ogqLQXlzcezl9yu1/yDkru9X7h+GQY3BzZIJukSDxySI7JBSmTCuHkiTyTF/LqvDjvzofzORidcIY762QEztc31+aw0A==</latexit>

k KEM.Decaps(sk, ct)

<latexit sha1_base64="PTKmRgTTD1VvdUJnVXjDNS/R8xM=">AAACFXicbVC7TsMwFHV4lvIqMLJYtEhMVdIBGCtYGItEH1IbVY5701q1nch2EFXUX2AtP8OGWJn5FwacNgNtOZKlo3Pu1T0+QcyZNq777Wxsbm3v7Bb2ivsHh0fHpZPTlo4SRaFJIx6pTkA0cCahaZjh0IkVEBFwaAfj+8xvP4PSLJJPZhKDL8hQspBRYjKpEo8r/VLZrbpz4HXi5aSMcjT6pZ/eIKKJAGkoJ1p3PTc2fkqUYZTDtNhLNMSEjskQupZKIkD76TzrFF9aZYDDSNknDZ6rfzdSIrSeiMBOCmJGetXLxP+8bmLCWz9lMk4MSLo4FCYcmwhnH8cDpoAaPrGEUMVsVkxHRBFqbD1LV14WUZc0kIlgBsS0aOvyVstZJ61a1buuuo+1cv0uL66AztEFukIeukF19IAaqIkoGqFXNENvzsx5dz6cz8XohpPvnKElOF+/66GfrQ==</latexit>

pk

<latexit sha1_base64="qvRR5ShOI+DZk1O2A7o45sTKiQM=">AAACFXicbVDLTsJAFJ36RHyhLt00gokr0rJQl0Q3LjGRRwINmQ63MGFm2szcGknDL7jFn3Fn3Lr2X1zYQhcCnmSSk3PuzT1z/Ehwg47zbW1sbm3v7Bb2ivsHh0fHpZPTlgljzaDJQhHqjk8NCK6giRwFdCINVPoC2v74PvPbz6AND9UTTiLwJB0qHnBGMZMqDCv9UtmpOnPY68TNSZnkaPRLP71ByGIJCpmgxnRdJ0IvoRo5EzAt9mIDEWVjOoRuShWVYLxknnVqX6bKwA5CnT6F9lz9u5FQacxE+umkpDgyq14m/ud1YwxuvYSrKEZQbHEoiIWNoZ193B5wDQzFJCWUaZ5mtdmIasowrWfpyssi6pIGKpYcQU6LaV3uajnrpFWrutdV57FWrt/lxRXIObkgV8QlN6ROHkiDNAkjI/JKZuTNmlnv1of1uRjdsPKdM7IE6+sX5NifqQ==</latexit>

ct

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
GeMSS Multi-variate 352,180 32

22

KEM Public key (bytes) Ciphertext (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Kyber Lattice-based (MLWE) 800 768
NTRU Lattice-based (NTRU) 699 699
Saber Lattice-based (MLWR) 672 736
SIKE Isogeny-based 330 330
SIKE compressed Isogeny-based 197 197

Implicitly authenticated KEX is not new

23

•DH-based: SKEME,
MQV, HMQV, …

•KEM-based:
BCGP09, FSXY12, …

• RSA key transport in TLS ≤
1.2

• Lacks forward secrecy
• Signal, Noise, Wireguard

• DH-based
• Different protocol flows

• OPTLS
• DH-based
• Requires a non-interactive key

exchange (NIKE)

In theory In practice

“KEMTLS”
handshake

KEM for
ephemeral key exchange

KEM for
server-to-client

authenticated key exchange

Combine shared secrets

24

Algorithm choices

25

KEM for ephemeral
key exchange

• IND-CCA (or IND-1CCA)
• Want small public key

+ small ciphertext

KEM for authenticated
key exchange

• IND-CCA
• Want small public key

+ small ciphertext

Signature scheme for
intermediate CA

• Want small public key
+ small signature

Signature scheme for
root CA

• Want small signature

4 scenarios

26

1. Minimize size when intermediate certificate
transmitted

2. Minimize size when intermediate certificate
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
ECDH X25519,
Falcon,
GeMSS,
Kyber,
NTRU,
RSA-2048,
SIKE,
XMSS’

27Rustls client/server with AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
ECDH X25519,
Falcon,
GeMSS,
Kyber,
NTRU,
RSA-2048,
SIKE,
XMSS’

28Rustls client/server with AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

Observations
• Size-optimized KEMTLS requires < ½ communication of size-

optimized PQ signed-KEM
• Speed-optimized KEMTLS uses 90% fewer server CPU cycles

and still reduces communication
• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)

• No extra round trips required until client starts sending
application data

• Smaller trusted code base (no signature generation on
client/server)

Security

30

Security model: multi-
stage key exchange,
extending [DFGS21]
•Key indistinguishability
•Forward secrecy
•Implicit and explicit
authentication

Ingredients in security proof:
• IND-CCA for long-term
KEM

• IND-1CCA for ephemeral
KEM

• Collision-resistant hash
function

• Dual-PRF security of HKDF
• EUF-CMA of HMAC

[DFGS21] Dowling, Fischlin, Günther, Stebila. Journal of Cryptology, 2021. https://eprint.iacr.org/2020/1044

https://eprint.iacr.org/2020/1044

Security subtleties: authentication

31

• Client’s first application flow
can’t be read by anyone other
than intended server, but
client doesn’t know server is
live at the time of sending

• Also provides a form of
deniable authentication since
no signatures are used

• Formally: offline deniability
[DGK06]

•Explicit authentication
once key confirmation
message transmitted

•Retroactive explicit
authentication of earlier
keys

[DGK06] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

Implicit authentication Explicit authentication

https://eprint.iacr.org/2006/280

Security subtleties: downgrade resilience

32

•Choice of cryptographic
algorithms not
authenticated at the time
the client sends its first
application flow
• MITM can’t trick client into
using undesirable
algorithm

• But MITM can trick them
into temporarily using
suboptimal algorithm

•Formally model 3 levels
of downgrade-resilience:
1. Full downgrade

resilience
2. No downgrade

resilience to
unsupported algorithms

3. No downgrade
resilience

Security subtleties: forward secrecy

33

• Weak forward secrecy 1:
adversary passive in the test
stage

• Weak forward secrecy 2:
adversary passive in the test
stage or never corrupted
peer’s long-term key

• Forward secrecy: adversary
passive in the test stage or
didn’t corrupt peer’s long-term
key before acceptance

•Can make detailed
forward secrecy
statements, such as:
• Stage 1 and 2 keys are
wfs1 when accepted,
retroactive fs once
stage 6 accepts

Certificate lifecycle management for KEM
public keys

34

Proof of possession: How does requester prove possession of
corresponding secret keys?

• Not really addressed in practice, since RSA and DL/ECDL keys can
be used for both signing and encryption/KEX

• Can’t sign like in a Certificate Signing Request (CSR)
• Could do interactive challenge-response protocol (or just run

KEMTLS), but need online verification (RFC 4210 Sect. 5.2.8.3)
• Send cert to requestor encrypted under key in the certificate (RFC

4210 Sect. 5.2.8.2) – but maybe broken by Certificate Transparency?
• Zero-knowledge proof of knowledge?

Thanks to Mike Ounsworth (Entrust Datacard) for raising some of these issues.
[1] https://mailarchive.ietf.org/arch/msg/spasm/FCCZv3Xi3rkbZyZWQnnMQM0EFYY/

Starting to be discussed on IETF LAMPS
mailing list (Jan. 28, 2021) [1]

https://mailarchive.ietf.org/arch/msg/spasm/FCCZv3Xi3rkbZyZWQnnMQM0EFYY/

Certificate lifecycle management for KEM
public keys

35

Revocation: How can certificate owner authorize a
revocation request?

• Put a (hash of a) signature public key in the cert which can
be used to revoke the cert?

• Possibly could simplify to just revealing a hash preimage

Conclusions on KEMTLS

36

• Summary of protocol design: implicit authentication via
KEMs

• Saves bytes on the wire and server CPU cycles
• Preserves client request after 1-RTT
• Caching intermediate CA certs brings even greater benefits

• Protocol design is simple to implement, provably secure
• Also have a variant supporting client authentication
• Working with Cloudflare to test within their infrastructure

Part 2:
Breaking implicitly authenticated
post-quantum key exchange
Nina Bindel, Douglas Stebila, Shannon Veitch. Improved attacks against key reuse in
learning with errors key exchange. IACR Cryptology ePrint Archive, October 2020.
https://eprint.iacr.org/2020/1288

37

https://eprint.iacr.org/2020/1288

Key reuse

Why reuse keys?
•certification
•storage requirements
•computational workload
•development efforts

Bob

g a

g y

g b

g y

g c

g y

Alice

Charlie

Dan

38

Learning with errors

4Regev, STOC 2005

Learning with errors

4

Discrete Gaussian distribution

Regev, STOC 2005

Ring learning with errors

5

Polynomial ring over a finite field.
- Commutative

Lyubashevsky, Piekert, Regev, EUROCRYPT 2010

Basic RLWE-based key exchange

42

RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:

43

RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:

44

RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:

45

RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:

46

RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:

47

RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:

48

RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:

49

“Alice”
(Eve)

Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

Bob

Goal:

50

“Alice”
(Eve)

Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

Bob

Goal:

51

Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176) 52

“Alice”
(Eve)

Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

Bob

Goal:

Note: stays the same when Bob reuses keys.

53

Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176) 54

“Alice”
(Eve)

Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

Bob

Goal:

55

We have:

What about signs? Relative signs

We now have: or

Attacking basic RLWE key exchange

56

•Absolute value recovery:
• q queries

•Relative sign recovery:
• zq queries

•E.g. 26 million samples

•q: modulus
•z: number of consecutive
zeroes

• [DARFL17]: (1+z)q
• [DFR18]: 32000n2𝛼
• [DRF18]: (1+z)q/2

+O(1)

•n: polynomial degree
•𝛼: standard deviation of
noise

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

RLWE key exchange
designed for key reuse

57

RLWE key exchange designed for key reuse
•Ding, Branco, Schmitt (eprint 2019/665)
•Uses a technique called “pasteurization” to disrupt
Bob’s computations

Ding, Branco, Schmitt (eprint 2019/665)

RLWE key exchange designed for key reuse

Ding, Branco, Schmitt (eprint 2019/665)

Alice Bob

Public:

59

(computed similarly)
MQV?

RLWE key exchange designed for key reuse

60

What’s new with ?

Fixed when is fixed

Known value:

Varies when Eve’s “identity” changes:

Claim: The signal function does not leak any information about the key ,
even when the same keys are reused.

RLWE key exchange designed for key reuse

61

Attacking RLWE KEX with key reuse

62

What’s new with ?

Fixed when is fixed

Known value:

Varies when Eve’s “identity” changes:

Our observation:
1/q of the time, the known value will be 0, and we’ve reduced to the previous protocol (and attack)

Attacking RLWE KEX with key reuse

63

Eve

Attacking RLWE KEX with key reuse

Bob

64

1. Send

2. Collect signals when for some bound .
Otherwise, try step 1 again with new “identity”.

3. Repeat with to collect relative signs.

Claim: The signal function does not leak any information about the key ,
even when the same keys are reused. FALSE.

Improving attacks: sparse signal collection

65

Goal: count 1 signal change

Sparse signal collection

66

normally distributed with
standard deviation

We can determine = maximum width of the “noisy period”.

bounded by some

Sparse signal collection

67

Collect every signal value.

Sparse signal collection in action

68

[DARFL16] Our work

n = 1024, q = 16385 3.8 hours 1 minute

Attacking plain RLWE key exchange (DXL12)

Our work

n = 512, q = 26 038 273 17 minutes, 14 seconds

n = 1024, q = 28 434 433 49 minutes

Attacking RLWE KEX with key exchange (DBS19)

Key exchange protocol designs

69

We couldn’t
figure out
how to attack
ZZDSD or
DBS AKE in
BR model

But can apply
our technique
to attack DBS
AKE in eCK
model

Wrapping up

Open questions

71

• Non-interactive key exchange
(NIKE)

• Static-static key exchange
• eCK-secure constructions directly
from LWE

• True MQV analogue?
• Certificate lifecycle management
for KEM keys

• Noise, Signal, …

•Key reuse
attacks against
ZZDSD and DBS
AKE in BR-PFS?

Making post-quantum AKE Breaking PQ AKE

Making and breaking implicitly
authenticated post-quantum key exchange

Douglas Stebila

https://www.douglas.stebila.ca/research/presentations/

KEMTLS
Implicitly authenticated TLS
without handshake signatures
using KEMs
https://eprint.iacr.org/2020/534
https://github.com/thomwiggers/kemtls-experiment/
https://openquantumsafe.org

Attacks on RLWE key reuse
Faster sparse signal collection
and insecurity of DBS key
reuse protocol
https://eprint.iacr.org/2020/1288
https://git.uwaterloo.ca/ssveitch/improved-key-reuse

72

https://www.douglas.stebila.ca/research/presentations/
https://eprint.iacr.org/2020/534
https://github.com/thomwiggers/kemtls-experiment/
https://openquantumsafe.org/
https://eprint.iacr.org/2020/1288
https://git.uwaterloo.ca/ssveitch/improved-key-reuse

