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Cryptography @ University of Waterloo
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• UW involved in 4 NIST PQC Round 3 submissions:
• Finalists: CRYSTALS-Kyber, NTRU
• Alternates: FrodoKEM, SIKE

• UW involved in 4 NIST Lightweight Crypto Round 2 submissions: ACE, SPIX, SpoC, 
WAGE

• Elliptic curves: David Jao, Alfred Menezes, (Scott Vanstone)
• Information theoretic cryptography: Doug Stinson
• Privacy-enhancing technologies: Ian Goldberg
• Quantum cryptanalysis: Michele Mosca
• Quantum cryptography: Norbert Lütkenhaus, Thomas Jennewein, Debbie Leung
• Gord Agnew, Vijay Ganesh, Guang Gong, Sergey Gorbunov, Anwar Hasan, Florian 

Kerschbaum
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Motivation

5



Authenticated key exchange
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•Two parties establish a shared secret over a 
public communication channel



Vast literature on AKE protocols
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• Many security definitions capturing various adversarial 
powers: BR, CK, eCK, …

• Different types of authentication credentials: public key, 
shared secret key, password, identity-based, …

• Additional security goals: weak/strong forward secrecy, 
key compromise impersonation resistance, post-compromise 
security, …

• Additional protocol functionality: multi-stage, ratcheting, …
• Group key exchange
• Real-world protocols: TLS, SSH, Signal, IKE, ISO, EMV, …
• …



Explicit
authentication

Alice is assured that 
only Bob would be 

able to compute the 
shared secret
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Alice receives 
assurance that she 

really is talking to Bob

Implicit
authentication



Explicitly authenticated key exchange:
Signed Diffie–Hellman
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Alice Bob

(pkA, skA) SIG.KeyGen() (pkB , skB) SIG.KeyGen()

obtain pkB obtain pkA

x $ {0, . . . , q � 1}
X  g

x
X

y $ {0, . . . , q � 1}
Y  g

y

�B  SIG.Sign(skB , AkBkXkY )Y,�B

�A  SIG.Sign(skA, AkBkXkY ) �A

k  H(sid, Y x) k  H(sid,Xy)

application data

using authenticated encryption



Implicitly authenticated key exchange:
Double-DH
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Alice Bob

skA $ {0, . . . , q � 1} skB  $ {0, . . . , q � 1}
pkA  g

skA pkB  g
skB

obtain pkB obtain pkA

x $ {0, . . . , q � 1} y $ {0, . . . , q � 1}
X  g

x
Y  g

y
X

Y

k  H(sid, pk
skA
B kY x) k  H(sid, pk

skB
A kXy)

application data

using authenticated encryption
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Public-key 
cryptography

RSA signatures
Elliptic curve 

Diffie–Hellman
key exchange 

(X25519)

Symmetric 
cryptography

AES
encryption

AES GCM 
integrity

Based on difficulty 

of computing 
discrete logarithmsNot quantum 

resistant!

Based on difficulty 

of factoring large 

numbers

Not quantum 

resistant!
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Part 1:
Making implicitly authenticated 
post-quantum key exchange
Peter Schwabe, Douglas Stebila, Thom Wiggers. Post-quantum TLS without 
handshake signatures. In Proc. 27th ACM Conference on Computer and 
Communications Security (CCS) 2020. ACM, November 2020. 
https://eprint.iacr.org/2020/534
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TLS 1.3
handshake

Signed Diffie–Hellman
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TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!
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Problem
post-quantum 

signatures
are big
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Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
GeMSS Multi-variate 352,180 32
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Solution
use 

post-quantum KEMs 
for authentication
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Key encapsulation mechanisms (KEMs)

21

An abstraction of Diffie–Hellman key exchange
<latexit sha1_base64="RDVfI7FP0yyVQqr+2G8wBIqhKDQ=">AAACQ3icbVDLSgNBEJz1bXxFPXoZjEIECbs5qEdRREGECEaFJITZSW8cMjO7zPSKYdnf8Gu8xn/wG7yJRwU3D8SoBQPV1d10TfmRFBZd98WZmJyanpmdm88tLC4tr+RX165tGBsOVR7K0Nz6zIIUGqooUMJtZIApX8KN3znu92/uwVgR6ivsRtBQrK1FIDjDTGrm3a1i1NmltrND621AS+uK4Z0NkvOTi7T0XUD3FHRa3NnKNf MFt+QOQP8Sb0QKZIRKM/9Rb4U8VqCRS2ZtzXMjbCTMoOAS0lw9thAx3mFtqGVUMwW2kQx+ltLtTGnRIDTZ00gH6s+NhClru8rPJgdWf/f64n+9WozBQSMROooRNB8eCmJJMaT9mGhLGOAouxlh3IjMK+V3zDCOWZhjVx6GVsc00LESCCrtx+X9DucvuS6XvL2Se1kuHB6NgpsjG2STFIlH9skhOSMVUiWcPJIn0iPPTs95dd6c9+HohDPaWSdjcD6/ALcUsLc=</latexit>

(pk, sk) KEM.KeyGen()

<latexit sha1_base64="XPVAcqpbuqaH8/jH2n2W0moLbT0="></latexit>

(ct, k) KEM.Encaps(pk)

<latexit sha1_base64="odAnpH0dxdWK5HcWBvymtpgGo+8=">AAACQnicbVDLSgNBEJz1bXxFPXoZjEIEibse1KP4AEGECEYDSQizk944ZGZ2mekVw7Kf4dd41Y/wF7yJVw9uHoKJFgxUV3fTNeVHUlh03TdnYnJqemZ2bj63sLi0vJJfXbu1YWw4VHgoQ1P1mQUpNFRQoIRqZIApX8Kd3znt9e8ewFgR6hvsRtBQrK1FIDjDTGrm97Y6tN4GtLSuGN7bILk8v0pLP8UZcBbZtGg7u5TjzlaumS +4JbcP+pd4Q1IgQ5Sb+a96K+SxAo1cMmtrnhthI2EGBZeQ5uqxhYjxDmtDLaOaKbCNpP+xlG5nSosGocmeRtpXf28kTFnbVX422Tc83uuJ//VqMQZHjUToKEbQfHAoiCXFkPZSoi1hgKPsZoRxIzKvlN8zwzhmWY5ceRxYHdFAx0ogqLQXlzcezl9yu1/yDkru9X7h+GQY3BzZIJukSDxySI7JBSmTCuHkiTyTF/LqvDjvzofzORidcIY762QEztc31+aw0A==</latexit>

k  KEM.Decaps(sk, ct)

<latexit sha1_base64="PTKmRgTTD1VvdUJnVXjDNS/R8xM=">AAACFXicbVC7TsMwFHV4lvIqMLJYtEhMVdIBGCtYGItEH1IbVY5701q1nch2EFXUX2AtP8OGWJn5FwacNgNtOZKlo3Pu1T0+QcyZNq777Wxsbm3v7Bb2ivsHh0fHpZPTlo4SRaFJIx6pTkA0cCahaZjh0IkVEBFwaAfj+8xvP4PSLJJPZhKDL8hQspBRYjKpEo8r/VLZrbpz4HXi5aSMcjT6pZ/eIKKJAGkoJ1p3PTc2fkqUYZTDtNhLNMSEjskQupZKIkD76TzrFF9aZYDDSNknDZ6rfzdSIrSeiMBOCmJGetXLxP+8bmLCWz9lMk4MSLo4FCYcmwhnH8cDpoAaPrGEUMVsVkxHRBFqbD1LV14WUZc0kIlgBsS0aOvyVstZJ61a1buuuo+1cv0uL66AztEFukIeukF19IAaqIkoGqFXNENvzsx5dz6cz8XohpPvnKElOF+/66GfrQ==</latexit>

pk

<latexit sha1_base64="qvRR5ShOI+DZk1O2A7o45sTKiQM=">AAACFXicbVDLTsJAFJ36RHyhLt00gokr0rJQl0Q3LjGRRwINmQ63MGFm2szcGknDL7jFn3Fn3Lr2X1zYQhcCnmSSk3PuzT1z/Ehwg47zbW1sbm3v7Bb2ivsHh0fHpZPTlgljzaDJQhHqjk8NCK6giRwFdCINVPoC2v74PvPbz6AND9UTTiLwJB0qHnBGMZMqDCv9UtmpOnPY68TNSZnkaPRLP71ByGIJCpmgxnRdJ0IvoRo5EzAt9mIDEWVjOoRuShWVYLxknnVqX6bKwA5CnT6F9lz9u5FQacxE+umkpDgyq14m/ud1YwxuvYSrKEZQbHEoiIWNoZ193B5wDQzFJCWUaZ5mtdmIasowrWfpyssi6pIGKpYcQU6LaV3uajnrpFWrutdV57FWrt/lxRXIObkgV8QlN6ROHkiDNAkjI/JKZuTNmlnv1of1uRjdsPKdM7IE6+sX5NifqQ==</latexit>

ct



Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
GeMSS Multi-variate 352,180 32
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KEM Public key (bytes) Ciphertext (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Kyber Lattice-based (MLWE) 800 768
NTRU Lattice-based (NTRU) 699 699
Saber Lattice-based (MLWR) 672 736
SIKE Isogeny-based 330 330
SIKE compressed Isogeny-based 197 197



Implicitly authenticated KEX is not new

23

•DH-based: SKEME, 
MQV, HMQV, …

•KEM-based: 
BCGP09, FSXY12, …

• RSA key transport in TLS ≤ 
1.2

• Lacks forward secrecy
• Signal, Noise, Wireguard

• DH-based
• Different protocol flows

• OPTLS
• DH-based
• Requires a non-interactive key 

exchange (NIKE)

In theory In practice



“KEMTLS” 
handshake

KEM for 
ephemeral key exchange

KEM for 
server-to-client

authenticated key exchange

Combine shared secrets
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Algorithm choices

25

KEM for ephemeral 
key exchange

• IND-CCA (or IND-1CCA)
• Want small public key 

+ small ciphertext

KEM for authenticated 
key exchange

• IND-CCA
• Want small public key 

+ small ciphertext

Signature scheme for 
intermediate CA

• Want small public key 
+ small signature

Signature scheme for 
root CA

• Want small signature



4 scenarios

26

1. Minimize size when intermediate certificate 
transmitted

2. Minimize size when intermediate certificate 
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions



Signed KEX 
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium, 
ECDH X25519, 
Falcon, 
GeMSS, 
Kyber, 
NTRU, 
RSA-2048, 
SIKE, 
XMSS’

27Rustls client/server with AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.
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Observations
• Size-optimized KEMTLS requires < ½ communication of size-

optimized PQ signed-KEM
• Speed-optimized KEMTLS uses 90% fewer server CPU cycles 

and still reduces communication
• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)

• No extra round trips required until client starts sending 
application data

• Smaller trusted code base (no signature generation on 
client/server)



Security

30

Security model: multi-
stage key exchange, 
extending [DFGS21]
•Key indistinguishability
•Forward secrecy
•Implicit and explicit 
authentication

Ingredients in security proof:
• IND-CCA for long-term 
KEM

• IND-1CCA for ephemeral 
KEM

• Collision-resistant hash 
function

• Dual-PRF security of HKDF
• EUF-CMA of HMAC

[DFGS21] Dowling, Fischlin, Günther, Stebila. Journal of Cryptology, 2021. https://eprint.iacr.org/2020/1044

https://eprint.iacr.org/2020/1044


Security subtleties: authentication
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• Client’s first application flow 
can’t be read by anyone other 
than intended server, but 
client doesn’t know server is 
live at the time of sending

• Also provides a form of 
deniable authentication since 
no signatures are used

• Formally: offline deniability 
[DGK06]

•Explicit authentication 
once key confirmation 
message transmitted

•Retroactive explicit 
authentication of earlier 
keys 

[DGK06] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

Implicit authentication Explicit authentication

https://eprint.iacr.org/2006/280


Security subtleties: downgrade resilience
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•Choice of cryptographic 
algorithms not 
authenticated at the time 
the client sends its first 
application flow
• MITM can’t trick client into 
using undesirable 
algorithm

• But MITM can trick them 
into temporarily using 
suboptimal algorithm

•Formally model 3 levels 
of downgrade-resilience:
1. Full downgrade 

resilience
2. No downgrade 

resilience to 
unsupported algorithms

3. No downgrade 
resilience



Security subtleties: forward secrecy
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• Weak forward secrecy 1: 
adversary passive in the test 
stage

• Weak forward secrecy 2: 
adversary passive in the test 
stage or never corrupted 
peer’s long-term key

• Forward secrecy: adversary 
passive in the test stage or 
didn’t corrupt peer’s long-term 
key before acceptance

•Can make detailed 
forward secrecy 
statements, such as:
• Stage 1 and 2 keys are 
wfs1 when accepted, 
retroactive fs once 
stage 6 accepts



Certificate lifecycle management for KEM 
public keys

34

Proof of possession: How does requester prove possession of 
corresponding secret keys?

• Not really addressed in practice, since RSA and DL/ECDL keys can 
be used for both signing and encryption/KEX

• Can’t sign like in a Certificate Signing Request (CSR)
• Could do interactive challenge-response protocol (or just run 

KEMTLS), but need online verification (RFC 4210 Sect. 5.2.8.3)
• Send cert to requestor encrypted under key in the certificate (RFC 

4210 Sect. 5.2.8.2) – but maybe broken by Certificate Transparency?
• Zero-knowledge proof of knowledge?

Thanks to Mike Ounsworth (Entrust Datacard) for raising some of these issues.
[1] https://mailarchive.ietf.org/arch/msg/spasm/FCCZv3Xi3rkbZyZWQnnMQM0EFYY/

Starting to be discussed on IETF LAMPS 
mailing list (Jan. 28, 2021) [1]

https://mailarchive.ietf.org/arch/msg/spasm/FCCZv3Xi3rkbZyZWQnnMQM0EFYY/


Certificate lifecycle management for KEM 
public keys

35

Revocation: How can certificate owner authorize a 
revocation request?

• Put a (hash of a) signature public key in the cert which can 
be used to revoke the cert?

• Possibly could simplify to just revealing a hash preimage



Conclusions on KEMTLS
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• Summary of protocol design: implicit authentication via 
KEMs

• Saves bytes on the wire and server CPU cycles
• Preserves client request after 1-RTT
• Caching intermediate CA certs brings even greater benefits

• Protocol design is simple to implement, provably secure
• Also have a variant supporting client authentication
• Working with Cloudflare to test within their infrastructure



Part 2: 
Breaking implicitly authenticated 
post-quantum key exchange
Nina Bindel, Douglas Stebila, Shannon Veitch. Improved attacks against key reuse in 
learning with errors key exchange. IACR Cryptology ePrint Archive, October 2020.
https://eprint.iacr.org/2020/1288
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Key reuse

Why reuse keys?
•certification
•storage requirements
•computational workload
•development efforts

Bob

g a

g y

g b

g y

g c

g y

Alice

Charlie

Dan
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Learning with errors

4Regev, STOC 2005



Learning with errors

4

Discrete Gaussian distribution

Regev, STOC 2005



Ring learning with errors

5

Polynomial ring over a finite field.
- Commutative

Lyubashevsky, Piekert, Regev, EUROCRYPT 2010



Basic RLWE-based key exchange

42



RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:

43



RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:
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RLWE-based key exchange
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RLWE-based key exchange
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RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:
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RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:
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RLWE-based key exchange

Ding, Xie, Lin (eprint 2012/688)

Alice Bob

Public:
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“Alice” 
(Eve)

Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

Bob

Goal: 
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“Alice” 
(Eve)

Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

Bob

Goal: 
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Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176) 52



“Alice” 
(Eve)

Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

Bob

Goal: 

Note:          stays the same when Bob reuses keys. 
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Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176) 54



“Alice” 
(Eve)

Attacking basic RLWE key exchange

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

Bob

Goal: 

55

We have:

What about signs? Relative signs

We now have:            or



Attacking basic RLWE key exchange
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•Absolute value recovery:
• q queries

•Relative sign recovery:
• zq queries

•E.g. 26 million samples

•q: modulus
•z: number of consecutive 
zeroes

• [DARFL17]: (1+z)q
• [DFR18]: 32000n2𝛼
• [DRF18]: (1+z)q/2

+O(1)

•n: polynomial degree
•𝛼: standard deviation of 
noise

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)



RLWE key exchange 
designed for key reuse
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RLWE key exchange designed for key reuse
•Ding, Branco, Schmitt (eprint 2019/665)
•Uses a technique called “pasteurization” to disrupt 
Bob’s computations

Ding, Branco, Schmitt (eprint 2019/665)



RLWE key exchange designed for key reuse

Ding, Branco, Schmitt (eprint 2019/665)

Alice Bob

Public:
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(        computed similarly)
MQV?



RLWE key exchange designed for key reuse
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What’s new with         ?

Fixed when         is fixed

Known value:

Varies when Eve’s “identity” changes:

Claim: The signal function does not leak any information about the key        , 
even when the same keys are reused.



RLWE key exchange designed for key reuse
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Attacking RLWE KEX with key reuse
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What’s new with         ?

Fixed when         is fixed

Known value:

Varies when Eve’s “identity” changes:

Our observation:
1/q of the time, the known value will be 0, and we’ve reduced to the previous protocol (and attack)



Attacking RLWE KEX with key reuse

63



Eve

Attacking RLWE KEX with key reuse

Bob

64

1. Send

2. Collect signals when for some bound       . 
Otherwise, try step 1 again with new “identity”. 

3. Repeat with to collect relative signs. 

Claim: The signal function does not leak any information about the key        , 
even when the same keys are reused. FALSE.



Improving attacks: sparse signal collection
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Goal: count 1 signal change



Sparse signal collection
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normally distributed with 
standard deviation

We can determine      = maximum width of the “noisy period”. 

bounded by some



Sparse signal collection
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Collect every                  signal value. 



Sparse signal collection in action

68

[DARFL16] Our work

n = 1024, q = 16385 3.8 hours 1 minute

Attacking plain RLWE key exchange (DXL12)

Our work

n = 512, q = 26 038 273 17 minutes, 14 seconds

n = 1024, q = 28 434 433 49 minutes

Attacking RLWE KEX with key exchange (DBS19)



Key exchange protocol designs
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We couldn’t 
figure out 
how to attack 
ZZDSD or 
DBS AKE in 
BR model 

But can apply 
our technique 
to attack DBS 
AKE in eCK
model



Wrapping up



Open questions

71

• Non-interactive key exchange 
(NIKE)

• Static-static key exchange
• eCK-secure constructions directly 
from LWE

• True MQV analogue?
• Certificate lifecycle management 
for KEM keys

• Noise, Signal, …

•Key reuse 
attacks against 
ZZDSD and DBS 
AKE in BR-PFS?

Making post-quantum AKE Breaking PQ AKE



Making and breaking implicitly 
authenticated post-quantum key exchange

Douglas Stebila

https://www.douglas.stebila.ca/research/presentations/

KEMTLS
Implicitly authenticated TLS 
without handshake signatures 
using KEMs
https://eprint.iacr.org/2020/534
https://github.com/thomwiggers/kemtls-experiment/
https://openquantumsafe.org

Attacks on RLWE key reuse
Faster sparse signal collection 
and insecurity of DBS key 
reuse protocol
https://eprint.iacr.org/2020/1288
https://git.uwaterloo.ca/ssveitch/improved-key-reuse
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