Making and breaking

implicitly authenticated
post-quantum key exchange

Douglas Stebila

............
WATERLOO CRSNG

Joint work with Peter Schwabe and Thom Wiggers
https://eprint.iacr.org/2020/534

Joint work with Nina Bindel and Shannon Veitch
https://eprint.iacr.org/2020/1288

CISPA - 2021-02-05

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2020/1288

UNIVERSITY OF

WATERLOO

San Francisco
o

CALIFORNIA

Los Angeles
o

Institute for

Quantum
Computing

OlLas Vegas

ARIZONA

San Diego
b)

U

n

RA

Canada

ited States

Dallas
[+]
o
Houston

Mexico

Mexico City
@

Go

Hudson Bay

ONSIN
! i

Chicago
10 g

Gulf of

Mexico

gle

Ciatemala

University of Waterloo
Research;:oriented
public university

N YORK

__ OPhiladelphia
VDt sy
WEST DE =
IRGI
NORT}
AROLIN
108
Cuba
Dominican
Republic

Puerto Ric

Labrador Sea

(YBERZ

SECURITY =
AND PRIVACY —

UNIVERSITY OF WATERLOO

Cryptography @ University of Waterloo

« UW involved in 4 NIST PQC Round 3 submissions:
* Finalists: CRYSTALS-Kyber, NTRU
* Alternates: FrodoKEM, SIKE

« UW involved in 4 NIST Lightweight Crypto Round 2 submissions: ACE, SPIX, SpoC,
WAGE

« Elliptic curves: David Jao, Alfred Menezes, (Scott Vanstone)

 Information theoretic cryptography: Doug Stinson

* Privacy-enhancing technologies: lan Goldberg

* Quantum cryptanalysis: Michele Mosca

« Quantum cryptography: Norbert Lutkenhaus, Thomas Jennewein, Debbie Leung

« Gord Agnew, Vijay Ganesh, Guang Gong, Sergey Gorbunov, Anwar Hasan, Florian
Kerschbaum

Motivation

Authenticated key exchange

* Two parties establish a shared secret over a
public communication channel

Vast literature on AKE protocols

* Many security definitions capturing various adversarial
powers: BR, CK, eCK, ...

* Different types of authentication credentials: public key,
shared secret key, password, identity-based, ...

» Additional security goals: weak/strong forward secrecy,
key Cc_)tmpromlse Impersonation resistance, post-compromise
security, ...

» Additional protocol functionality: multi-stage, ratcheting, ...

* Group key exchange
* Real-world protocols: TLS, SSH, Signal, IKE, ISO, EMYV, ...

Explicit Implicit
authentication authentication
Alice receives Alice Is assured that
assurance that she only Bob would be

really iIs talking to Bob able to compute the
shared secret

Explicitly authenticated key exchange:

Signed Diffie—Hellman

Alice

(pka, ska) < SIG.KeyGen()
obtain pkp

X + ¢* X
Y, OB
o4 < SIG.Sign(sk4, A||B||X||Y) oA

k < H(sid,Y™)
application data

usi}lg authenticated encrypt'ion

Bob

(pkB, SkB) — SIG.KeyGen()
obtain pka

o « SIG.Sign(skp, A B|| X||Y)

k < H(sid, XY)

Implicitly authenticated key exchange:
Double-DH

Alice Bob
ska <+s{0,..., qg—1} skp <s{0,..., q—1}
pkA — gSkA pkB Y. gSkB
obtain pkp obtain pk4
x <+s{0,..., qg—1} y<+s4{0,..., q—1}
X < g° X Y « ¢Y
Y
k <« H(sid, pkirt||Y™®) k < H(sid, pkSF®|XY)

application data

usi}lg authenticated encryptrion

. Home

C @& cispa.de/en

Vi
: |ICISPA MENU —

AT\

The CISPA Helmholtz Center for Information Security is a German
national Big Science Institution within the Helmholtz Association.
Our research encompasses all aspects of Information Security.

. Home X -+

@ cispa.de/en

= 4l Elements Console Sources Security X »

& Overview Security overview

CISPA MENU = :

Main origin

Reload to view details This page is secure (valid HTTPS).

m Certificate - valid and trusted

The connection to this site is using a valid, trusted server
certificate issued by R3.

. View certificate

Connection - secure connection settings

The connection to this site is encrypted and authenticated using
TLS 1.3, X25519, and AES_256_GCM.

Resources - all served securely

All resources on this page are served securely.

L DST Root CA X3
L. & r3

:
The CISPA Helmholtz Center for Information — o

Security is a German national Big Science Details
Subject Name

Institution within the Helmholtz Association. Common Name www.cispa.de
Our research encompasses all aspects of Issuer Name

- . C t Regi uUs
Information Security. ountry or Region

Organization Let's Encrypt
Common Name R3

Serial Number 04 86 00 39 D5 67 82 84 5979 44 53 11 8A
6C DA 5A 6E

Signature Algorithm SHA-256 with RSA Encryption
(1.2.840.113549.1.1.11)

raraiiciers IvUlic

.Home X -+
& C @ cispa.de/en * O 0 » &

[w jJ Elements Console Sources Security X » 7 a : X

@ Overview Security overview

&
Main origin

Reload to view details This page is secure (valid HTTPS).

B Certificate - valid and trusted

The connection to this site is using a valid, trusted server
certificate issued by R3.

View certificate

B Connection - secure connection settings

The connection to this site is encrypted and authenticated using
TLS 1.3, X25519, and AES_256_GCM.

B Resources - all served securely

All resources on this page are served securely.

L DST Root CA X3
L. L& R3

L. B www.cispa.de

2 German national Big Sci® Details

\ Helmholtz Center for Inforg

Subject Name

,;-LutiOﬂ W|th|n the He|mh0|tz ASSOCiatiOI . Common Name www.cispa.de

Issuer Name

PUbI |C'key Country or Region US
Cryptog raphy Organization Let's Encrypt

Common Name R3

Serial Number 04 86 00 39 D5 67 82 84 5979 44 53 11 8A

6C DA 5A 6E
DEfIfI'phﬁ CILIJ rve Signature Algorithm (STgigfgﬁgg;;ﬁfﬂc;yption
Ime—meliman PIETEETNOne

RSA signatures

key exchange
(X25519)

Quantum Threat Timeline

Authors: Dr. Michele Mosca, co-founder; President and CEO, evolutionQ Inc. = GLOBAL
Dr. Marco Piani, Senior Researcher Analyst, evolutionQ Inc. @ RISK

INSTITUTE

EXPERT OPINIONS ON THE
LIKELIHOOD OF A
SIGNIFICANT QUANTUM
THREAT TO PUBLIC-KEY
CYBERSECURITY

AS FUNCTION OF TIME

B

<1% <5% <30% ®mM~50% mWM>70% MWM>95% MWM>99%

5 YEARS 12 8 2
10 YEARS 4 8 5
15 YEARS 3 8 7 2 2
20 YEARS 2 10 5 4 1
30 YEARS 5 8 3 6

Numbers reflect how many experts (out of 22) assigned a certain probability range.

https://globalriskinstitute.org/publications/quantum-threat-timeline/

® B csee - NST Computer Se +

M~ 00
- oo L

= CSRC MENU

o]

COMPUTER SECURITY
RESOURCE CENTER

CSrC

Post-Quantum Cryptography

Post-Quantum Cryptography Standardization

Post-quantum candidate algorithm nominations are due November 30, 2017.

Call for Proposals

Call for Proposals Announcement

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant
public-key cryptographic algorithms. Currently, public-key cryptographic algorithms are specified in

FIPS 186-4, Digital Signature Standard, as well as special publications SP 800-56A Revision 2,

Recommendaation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography

and SP 800-56B Revision 1, Recommendation for Pair-Wise Ke hemes Using Integer

w-Establishment S

nsLgow .o &

14

https://globalriskinstitute.org/publications/quantum-threat-timeline/

Part 1:
Making implicitly authenticated

post-quantum key exchange

Peter Schwabe, Douglas Stebila, Thom Wiggers. Post-quantum TLS without
handshake signatures. In Proc. 27th ACM Conference on Computer and
Communications Security (CCS) 2020. ACM, November 2020.
https://eprint.iacr.org/2020/534

15

https://eprint.iacr.org/2020/534

TLS 1.3
handshake

Signed Diffie—Hellman

Client Server
static (sig): pkc, sk
TCP SYN (sig): pkg S‘
) TCP SYN-ACK
X —s$7Z
q gx

»

Yy «$Zg
ss «— g*Y
K <« KDF(ss)

gY, AEADk (cert[pkg]||Sig(sks, transcript)||key confirmation)

A

AEADg (key confirmation)

\

AEADg~(application data)

Y

AEADg (application data)

A

TLS 1.3
handshake

Sianed Difie_Holl

Post-Quantum!!!

Client

TCP SYN

Server

static (sig) pkg, sks

»
o

TCP SYN-ACK

<
«

(ok gk o KM Lealien() gyl

(b se) = Yy

k)

KEM. L%f\oa[pszpﬁss*syx/y

K « KDF(ss)

cS
gy,/ AEADK (cert[pkg]||Sig(sks, transcript)||key confirmation)

tﬁzc&Q%

AEADg (key confirmation)

Y

AEADK» (application data)

Y

AEADg (application data)

A

17

post-quantum

PI‘Ohlem signatures

are big

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256
Elliptic curves Elliptic curve discrete logarithm 32 32
Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979

GeMSS Multi-variate 352,180 32

use

SOlution post-quantum KEMs
for authentication

Key encapsulation mechanisms (KEMs)

An abstraction of Diffie—Hellman key exchange

(pk, sk) + KEM.KeyGen()
pk

(ct, k) < KEM.Encaps(pk)
ct

k < KEM.Decaps(sk, ct)

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256
Elliptic curves Elliptic curve discrete logarithm 32 32
Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
GeMSS Multi-variate 352,180 32
RSA-2048 Factoring 272 256
Elliptic curves Elliptic curve discrete logarithm 32 32
Kyber Lattice-based (MLWE) 800 768
NTRU Lattice-based (NTRU) 699 699
Saber Lattice-based (MLWR) 672 736
SIKE Isogeny-based 330 330

SIKE compressed Isogeny-based 197 197

Implicitly authenticated KEX is not new

In theory In practice
e DH-based: SKEME, . I?%A key transport in TLS <
MQV, HMQV, . Lacks fomard secrecy
- KEM-based: . SolgSI_aI_IE);\lszlge, Wireguard
BCGP09, FSXY12, ... - Different protocol flows
« OPTLS
» DH-based

* Requires a non-interactive key
exchange (NIKE)

“KEMTLS”
handshake

KEM for
ephemeral key exchange

KEM for
server-to-client
authenticated key exchange

Combine shared secrets

Client

Server

static (KEMs): pkg, skg

TCP SYN

<
<

TCP SYN-ACK

(pke, ske) < KEMe.Keygen()

pke

<
<%

>
>

(sse, cte) «— KEMe.Encapsulate(pk,)
K1, K] < KDF(ss,)

cte, AEADK, (cert[pkg])

sse < KEM¢.Decapsulate(cte, ske)
Kj, K{ < KDF(sse)
(sss, cts) < KEMs.Encapsulate pkg)

AEADK{ (cts)

sss < KEMg.Decapsulate(ctg, skg)
K2, K}, K}/, K} < KDF(sse[[sss)

AEADk, (key confirmation), AEAD K, (application data)

Y

AEADg (key confirmation)

A

AEAD g (application data)

24

Algorithm choices

KEM for ephemeral

key exchange
IND-CCA (or IND-1CCA)

« Want small public key
+ small ciphertext

Signature scheme for
intermediate CA
« Want small public key
+ small signature

KEM for authenticated

key exchange
IND-CCA

« Want small public key
+ small ciphertext

Signature scheme for
root CA
* Want small signature

4 scenarios

1. Minimize size when intermediate certificate
transmitted

2. Minimize size when intermediate certificate
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions

Signed KEX
versus
KEMTLS

Labels ABCD:

A = ephemeral KEM
B = leaf certificate

C = intermediate CA
D =root CA

Algorithms: (all level 1)
Dilithium,

ECDH X25519,
Falcon,

GeMSS,

Kyber,

NTRU,

RSA-2048,

SIKE,

XMSS’

Time until client received
encrypted application data (ms)

250

200

150

100

50

SSXG

min incl. int. CA cert.

SFXG

assumption: NTRU

m signed KEX

incl. int. CA cert.

e KEMTLS

incl. int. CA cert.

ERRR NFFF
.m - NNFFenm —n e
RSA-2048 KKDD KDDD E
sXess19 assumption: MLWE -
>
=~
&=

2 4 6 8 10

Size of public key crypto objects transmitted (KB)

Rustls client/server with AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

27

Signed KEX
versus
KEMTLS

Labels ABCD:

A = ephemeral KEM
B = leaf certificate

C = intermediate CA
D =root CA

Algorithms: (all level 1)
Dilithium,

ECDH X25519,
Falcon,

GeMSS,

Kyber,

NTRU,

RSA-2048,

SIKE,

XMSS’

Time until client received
encrypted application data (ms)

250

200

150

100

50

SSGG SSXG

min incl. int. CA cert.

min &cl. o signed KEX
int. .
cert SFXG excl. int. CA cert.
o KEMTLS
SFGG excl. int. CA cert.
assumption: NTRU
ERRR NFFF _ NFFF
~.Om NNFF 2 NNFFea———¢ - —
RSA-2048 KKDD KDDD KKDD KDDD
+ X25519

m signed KEX

incl. int. CA cert.

e KEMTLS

incl. int. CA cert.

assumption: MLWE

1RTT 2RTT 3RTT

2 4

6

8 10

Size of public key crypto objects transmitted (KB)

Rustls client/server with AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

28

Observations

» Size-optimized KEMTLS requires < %2 communication of size-
optimized PQ signed-KEM

» Speed-optimized KEMTLS uses 90% fewer server CPU cycles
and still reduces communication
* NTRU KEX (27 us) 10x faster than Falcon signing (254 us)

* No extra round trips required until client starts sending
application data

« Smaller trusted code base (no signature generation on
client/server)

Security

Security model: multi- Ingredients in security proof:
stage key exchange, ‘ ll(\'ED“;ICCA for long-term

exten.dln.g [_DFC?SZH_ | * IND-1CCA for ephemeral
*Key indistinguishability KEM

e Forward Secrecy * Collision-resistant hash
o o function
*Implicit and explicit - Dual-PRF security of HKDF
authentication e EUF-CMA of HMAC

[DFGS21] Dowling, Fischlin, Gunther, Stebila. Journal of Cryptology, 2021. https://eprint.iacr.org/2020/1044

https://eprint.iacr.org/2020/1044

Security subtleties: authentication

Implicit authentication Explicit authentication

* Client’s first application flow . . ST
cant be road by sayone other * EXPplicit authentication

than intended server, but once key confirmation
client doesn’'t know server is -
live at the time of sending message transmitted
* Also provides a form of . : .
denia%le authentication since Retmac_tlve_ explicit _
no F'Slgnaltlure?f I_areduse_db_l_t authentication of earlier
* rormaily. ofrmine aenialll
[DGKO6] Y keys

[DGKO6] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

https://eprint.iacr.org/2006/280

Security subtleties: downgrade resilience

*Choice of cryptographic < Formally model 3 levels
algorithms not

authenticated at the time ~ ©f downgrade-resilience:

the client sends its first 1. Full downgrade
application flow resilience
° M'TM can't t_riCk client into 2 No downgrade
g%ggr;itﬁrr}(]jeswable resilience to
» But MITM can trick them unsupported algorithms
into temporarily using 3. No downgrade

suboptimal algorithm resilience

Security subtleties: forward secrecy

 Weak forward secrecy 1: . :
adversary passive in thye test Can make detailed
stage forward secrecy

* Weak forward secrecy 2: :
adversary passive in thye test statements, such as:
stage or never corrupted « Stage 1 and 2 keys are

peer's long-term key wfs1 when accepted,
* Forward secrecy: adversary .
passive in the test stage or retroactive fs once

didn’t corrupt peer’s long-term Stage o accepts
key before acceptance

Certificate lifecycle management for KEM

public keys

Proof of possession: How does requester prove possession of
corresponding secret keys?

* Not really addressed in practice, since RSA and DL/ECDL keys can
be used for both signing and encryption/KEX

» Can't sign like in a Certificate Signing Request (CSR)

* Could do interactive challenge-response protocol (or just run
KEMTLS), but need online verification (RFC 4210 Sect. 5.2.8.3)

« Send cert to requestor encrypted under key in the certificate (RFC
4210 Sect. 5.2.8.2) — but maybe broken by Certificate Transparency?

« Zero-knowledge proof of knowledge?

Thanks to Mike Ounsworth (Entrust Datacard) for raising some of these issues.
[1] https://mailarchive.ietf.org/arch/msg/spasm/FCCZv3Xi3rkbZyZWQnnMQMOEFYY/

https://mailarchive.ietf.org/arch/msg/spasm/FCCZv3Xi3rkbZyZWQnnMQM0EFYY/

Certificate lifecycle management for KEM
public keys

Revocation: How can certificate owner authorize a
revocation request?

* Put a (hash of a) signature public key in the cert which can
be used to revoke the cert?

» Possibly could simplify to just revealing a hash preimage

Conclusions on KEMTLS

 Summary of protocol design: implicit authentication via
KEMs

» Saves bytes on the wire and server CPU cycles
* Preserves client request after 1-RTT
» Caching intermediate CA certs brings even greater benefits

* Protocol design is simple to implement, provably secure
* Also have a variant supporting client authentication
* Working with Cloudflare to test within their infrastructure

Part 2:
Breaking implicitly authenticated

post-quantum key exchange

Nina Bindel, Douglas Stebila, Shannon Veitch. Improved attacks against key reuse in
learning with errors key exchange. IACR Cryptology ePrint Archive, October 2020.

https://eprint.iacr.org/2020/1288

2

https://eprint.iacr.org/2020/1288

Key reuse

g Why reuse keys?
Alice gY L :
g . * certification
rate BT »storage requirements
T »computational workload

*development efforts

Learning with errors

Given (A, b) with A <—¢g Z7"*", 5 <=5 Xa,¢ $§ Xa,b = As +¢ mod g, find s,

Regev, STOC 2005

Learning with errors

Given (A, b) with A ¢ Z;**", s <=3 Xa,¢ ¢§ Xa,b = As+¢ mod g, find s.

N/

12

10

8

6

4

. ,.|| II.,
-109 -8 -7 6 -5-4-3-2-1012 3 456 7 8 910

Discrete Gaussian distribution

Regev, STOC 2005

Ring learning with errors

Rq
Given (A, b) with A ¢ Z7"*", 5 ¢ Xa, ¢ “§ Xa,b = As+ ¢ mod g, find s.

R, = Zq|z]/ ®(z)

Polynomial ring over a finite field.
Commutative

Lyubashevsky, Piekert, Regev, EUROCRYPT 2010

Basic RLWE-based key exchange

RLWE-based key exchange

W —3$ Xas —3$ Xao
pA=ass+ 2

Alice

Ding, Xie, Lin (eprint 2012/688)

Public: a <3 R,

SB<$ Xa,€B<$ Xa
pB = asp + 2ep

...

Bob

RLWE-based key exchange

W —3$ Xas —3$ Xao
pA=ass+ 2

Alice

Public: a <3 R,

pa

Ding, Xie, Lin (eprint 2012/688)

v

0
Sig(v) =
g(v) {1
SB<$ Xa,€B4 8§ Xa L
pB = asp + 2ep
Bob

dB <o Rq
kp =pasp +2¢ggB
wp = Sig(k‘B)

- [11}

fveF
otherwise

RLWE-based key exchange

Public: a <3 R,

(e —$ Xa) €A <8 Xa
pPA=ass+ 2
Alice PA
) PB wpg
—o Ry
=ppsas +2

Ding, Xie, Lin (eprint 2012/688)

0
Sig(v) =
g(v) {1
SB<$ Xa,€B4 8§ Xa L
pB = asp + 2ep
Bob

dB <o Rq
kp =pasp +2¢ggB
wp = Sig(k‘B)

- [11}

fveF
otherwise

45

RLWE-based key exchange

Public: a <3 R,

W —3$ Xas —3$ Xao
pPA=as,+2
Alice DA
) PB wpg
—o Ry
=ppsas +2
= M0d2(,wB)

Ding, Xie, Lin (eprint 2012/688)

B={-[4].... 4]}

0 fvekF
Si =
g(v) { 1 otherwise

SB$ Xa,EB4$ Xa Lo
pB = asp + 2ep

Bob

dB <o Rq
kp =pasp + 298
wp = Sig(k‘B)

SkB = MOdQ(k’B,wB)

Mods : Z, x {0,1} — {0,1}

Mods (v, w) = (v +w - q;—l) mod ¢ mod,2

RLWE-based key exchange

Public: e.g.q =17,a[0] =9

pal0] =9-(-2) +2-(-2) =5 ppl0] =9-(1)+2-(-1) =7

: Bob
Alice PA

Ding, Xie, Lin (eprint 2012/688)

RLWE-based key exchange

Public: e.g.q =17,a[0] =9

pald] =9 (-2) +2: (-2) = =5

Alice PA

psl0] =9 (1) +2- (1) =7

PB wp

Sig(kp[0]) = Sig(—5-1+2-(-1))
= Sig(—7) =1

Ding, Xie, Lin (eprint 2012/688)

Bob

48

RLWE-based key exchange

Public: e.g.q =17,a[0] =9

pal0] =9-(-2)+2-(-2)=-5 pel0]=9-(1)+2-(-1)=7

: Bob
Alice PA

Sig(kg[0]) = Sig(—5-1+2-(-1))

= Sig(—7) =1
PB wp
Mods (% 4[0], wp[0]) = Mody(—12,1) Mods(k5[0], wp[0]) = Moda(—7,1)
=—-1241-8 modgq mod2=1 =—7+1-8 modg mod2=1

Ding, Xie, Lin (eprint 2012/688) 49

Attacking basic RLWE key exchange

S

/e o\\

l J |
y
. ﬂ “er_/r\,‘/r/

“Alice” [
(Eve) pPa

Goal: Find sp.

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

A

PB wp

v

wp = Sig(pasp +29B)

Bob

50

Attacking basic RLWE key exchange

Aza

,oo\\

J |
- L

“A”CG” | _ ??
(Eve) Pa="*"

Goal: Find sp.

A

v

0 fvekF
Si =
g(v) { 1 otherwise

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

wp = Sig(pasp +29B)

Bob

51

Attacking basic RLWE key exchange

wp = Sig(pisp +29B) eg.spli]=—4,95=0,g=17

pa=0,pasp[i| =0, wgl[i|=0
pa=1,paspli| = —4,wp[i] =0
pa =2,pa8B[i] = -8, wgli| =1
pa=3,paspli] =5, wpli] =1
pa=4,paspli| =1, wgli|=0
pa =5,paspli] = —3,wg[i| =0 1.0 -
pa=06,paspli]l = -7, wgli| =1
pa="T,paspli| =6, wpli]=1
pa=8,paspli| =2, wpgli|=0
pa=9,paspli] = -2, wpli] =0

pa =10,paspli]l = —6,wp[i| =1 0.0
pa=11,paspli] =7, wgli|=1
pa =12,paspli] =3, wgli]=0
pa =13, paspli] = —1,wp(i] =0
pa =14,paspli] = =5, wpgli| =1

of signal changes: |2sg[i]|

) . 0.0
pa =16,paspli| =4, wpgli|=0

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

52

Attacking basic RLWE key exchange

’B'
D e
Il

o

P -
J | . v 4
R L P wpg = Sig(bisp + 29B)

“Alice” Bob
(Eve)

v

A

Goal: Find sp. bA—1

v

DB wp = Sig(bisp + 29%)

A

Note: sg staysthe same when Bob reuses keys.

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176) 53

Attacking basic RLWE key exchange

\

0.4 4

Lo 111
T TV
\

/

0.2 1

0.0

0 2000 4000 6000 8000 10000

e.g. signals received sp[i| = 3,q = 16385

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

54

Attacking basic RLWE key exchange

)
[@@\

ﬁ' ba = k,ke{0,q—1}

R

“Alice” pa = (1+2z)k,ke{0,q—1} Bob
(Eve) kg = (1 +x)ksp + 295

Goal: Find sp.

kB[O] = SB[O] — sB[n — 1] + 2gB[0]
We have: |[ss| o ksl1] = s5[0] + s5[1] + 295[1]
What about signs? Relative signs<—— . 1o] — s,[1] + sp[2] + 205[2]

kp[3] = sp[2] + sB[3] + 2953

We now have: SB or —SB

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

Attacking basic RLWE key exchange

* Absolute value recovery: <[DARFL17]: (1+z)q
* g queries *[DFR18]: 32000n?a
* Relative sign recovery: -[DRF18]: (1+2)q/2
+O(1

e Zq queries
*E.g. 26 million samples

- g: modulus *n: polynomial degree
. 7 number of consecutive °*&: standard deviation of
zeroes noise

Fluhrer (eprint 2016/085), Ding, Aslayigh, RV, Fluhrer, Lin (eprint 2016/1176)

RLWE key exchange
designed for key reuse

RLWE key exchange designed for key reuse

*Ding, Branco, Schmitt (eprint 2019/665)

* Uses a technique called “pasteurization” to disrupt
Bob’s computations

Ding, Branco, Schmitt (eprint 2019/665)

RLWE key exchange designed for key reuse

Public: a <3 R,

SB<$ Xa,€B<$ Xa —
pB = asp + 2ep

Bob

fB 3§ Xa
9B < 8% Xa
pA=patac+2fp

kp =Dpa(sp + Ci) + 298
wp = Sig(ks) ~ ®

A 8 Xasr €4 <8 Xa
pPA=as,~+ 2
Alice Pa
) PB wp
(computed similarly)
= M0d2(,wB)

Ding, Branco, Schmitt (eprint 2019/665)

Sk?B = MOdQ(kB,’wB)

c = Hy(“Alice”, “Bob”,p4)
d = Hy(“Alice”, “Bob” ,pa,pB) 59

RLWE key exchange designed for key reuse

What’s new with wg? wg = Sig(ks) kp =pa(sp+d)+2gB
= (pa +ac+2fp)(sp +d)+ 295
=pasSB + pad+acsg +acd+ 2fgsp + 2fpd + 2gB

= DASB +gAd+ch+ ac§+ngsB +2fpd+ 2gp — 2C€BJ

known value error term

pad+ ppc+ acd =paHy(“Alice”, “Bob” ,pa,pB) + ppHi(“Alice”, “Bob” ,p4)

Known value:
+ aHy(“Alice”, “Bob” ,pa)H1(“Alice”, “Bob” ,pa,pB)

Fixed when pa is fixed

Varies when Eve’s “identity” changes:
Hy(“Alice”, “Bob” ,pa) # H1(“Charlie”, “Bob” ,pa) # H1(“Dan”, “Bob” ,pa)

Claim: The signal function does not leak any information about the key Sp
even when the same keys are reused.

RLWE key exchange designed for key reuse

e
M |

00000000000000000000

e.g. signals received sp[i] = 3,q = 16385

Attacking RLWE KEX with key reuse

What’s new with wg? wp = Sig(ks) kg =pa(sg+d) + 295
= (pa +ac+2fB)(sp + d) + 295
=pasSB + pad+acsg +acd+ 2fgsp + 2fpd + 2gB
= PASB ‘l'gAd + pBcC + acgl+ngsB +2fpd+ 2gp — 20634

~
known value error term

Known value: Pad+ppc+ acd =paHi(“Alice”, “Bob”,pa,pp) + ppHi(“Alice”, “Bob”,pa)
+ aHq(“Alice”, “Bob” ,pa)Hy(“Alice”, “Bob” ,pa,pB)

Fixed when pa is fixed

Varies when Eve’s “identity” changes:

Hy(“Alice”, “Bob” ,pa) # H1(“Charlie”, “Bob” ,pa) # H1(“Dan”, “Bob” ,p4)

Our observation:

1/q of the time, the known value will be 0, and we’ve reduced to the previous protocol (and attack)

62

Attacking RLWE KEX with key reuse

10000 12000 14000 16000

e.g. signals received sp[i| = 3, ¢ = 16385, |known value| < 500

63

Attacking RLWE KEX with key reuse

_);7 1. Send pa = k, ke {0,q—1} W
Eve 2. Collect signals when |[pad + ppc+ acd| < h for some bound h . Bob

Otherwise, try step 1 again with new “identity”.

3. Repeatwith py = (14 x)k,k € {0,q — 1} to collect relative signs.

Claim: The signal function does not leak any information about the key sp ,
even when the same keys are reused. FALSE.

Improving attacks: sparse signal collection

Goal: count 1 signal change

Sparse signal collection

kg =pasp+pad+ppc+acd+2fpsp +2fpd+ 29p — 2cep

known value error term
bounded by some h normally distributed with
standard deviation
V12no4 + 402

We can determine b =maximum width of the “noisy period”.

Sparse signal collection

b b

Collectevery b+ 1 signalvalue.

Sparse signal collection in action

Attacking plain RLWE key exchange (DXL12)

[DARFL16]

Our work

n=1024, q=16385

3.8 hours

1 minute

Attacking RLWE KEX with key exchange (DBS19)

Our work

n =512, q = 26 038 273

17 minutes, 14 seconds

n=1024, q =28 434 433

49 minutes

Key exchange protocol designs

Protocol Shared secret Error Security model
correction

DH-based key exchange

DH [9] g — passive

HMQV [20] glratesa)(rptdss) - CK with wFS

CMQV [31] g(fatesa)(Fptdss) — eCK

LWE-based public key encryption and key exchange

Regev [29], LPR [23] =~ arars rounding IND-CPA

DXL [16] R arATp signal fn. passive

Peikert [26], BCNS [5] = ararg reconciliation passive

Z7ZDSD [32] ~a(ra+csa)(rp +dsp) signal fn. BR with wFS

DBS reusable [12] ~ a(sp+c)(sp+ d) signal fn. key reuse robustness

DBS AKE [12] ~a(ra+sa+c)(rg+sp+d) signal fn. BR with wFS

We couldn’t
figure out
how to attack
ZZDSD or
DBS AKE in
BR model

But can apply
our technique
to attack DBS
AKE in eCK
model

69

Wrapping up

Open questions
Making post-quantum AKE

* Non-interactive key exchange
(NIKE)
« Static-static key exchange

» eCK-secure constructions directly
from LWE

* True MQV analogue?

* Certificate lifecycle management
for KEM keys

* Noise, Signal, ...

Breaking PQ AKE

*Key reuse
attacks against
Z/ZDSD and DBS
AKE in BR-PFS?

Making and breaking implicitly

authenticated post-quantum key exchange

KEMTLS Attacks on RLWE key reuse
Implicitly authenticated TLS Faster sparse signal collection
without handshake signatures and insecurity of DBS key
using KEMs reuse protocol
https://eprint.iacr.org/2020/534 https://eprint.iacr.org/2020/1288
https://github.com/thomwiggers/kemtls-experiment/ https://qgit.uwaterloo.ca/ssveitch/improved-key-reuse

https://openquantumsafe.org

https://www.douglas.stebila.ca/research/presentations/ 72

https://www.douglas.stebila.ca/research/presentations/
https://eprint.iacr.org/2020/534
https://github.com/thomwiggers/kemtls-experiment/
https://openquantumsafe.org/
https://eprint.iacr.org/2020/1288
https://git.uwaterloo.ca/ssveitch/improved-key-reuse

