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Cryptography @ University of Waterloo
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• UW involved in 4 NIST PQC Round 3 submissions:
• Finalists: CRYSTALS-Kyber, NTRU
• Alternates: FrodoKEM, SIKE

• Elliptic curves: David Jao, Alfred Menezes, (Scott Vanstone)
• More cryptography: Sergey Gorbunov, Mohammad Hajiabadi, Doug Stinson
• Privacy-enhancing technologies: Ian Goldberg
• Quantum cryptanalysis: Michele Mosca
• Quantum cryptography: Norbert Lütkenhaus, Thomas Jennewein, Debbie 

Leung
• Even more cryptography and security: Gord Agnew, Vijay Ganesh, Guang

Gong, Sergey Gorbunov, Anwar Hasan, Florian Kerschbaum



Background
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Cryptographic building blocks
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Public-key 
cryptography

RSA or elliptic 
curve 

signatures

Elliptic curve 
Diffie–Hellman
key exchange

Symmetric 
cryptography

AES
encryption

AES GCM 
integrity



TLS 1.3
handshake

Signed Diffie–Hellman
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Diffie-Hellman key exchange

Digital signature



Cryptographic building blocks
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Public-key 
cryptography

RSA or elliptic 
curve 

signatures

Elliptic curve 
Diffie–Hellman
key exchange

Symmetric 
cryptography

AES
encryption

AES GCM 
integrity

Based on 
difficulty of 

factoring large 
numbers

– not quantum 
resistant!

Based on difficulty of 

computing discrete 
logarithms

– not quantum resistant!



TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!
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Outline

Post-quantum

Benchmarking

Hybrid standardization

New protocol designs 
(KEMTLS)

11



Why post-quantum?
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Quantum threat to information security
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Large-scale 
general-purpose 

quantum 
computers could 

break some 
encryption 
schemes

Need to migrate 
encryption to 

quantum-
resistant 

algorithms

When should we 
start the 
process?



When will a large-scale 
quantum computer be 
built?
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“I estimate a 1/7 
chance of breaking 
RSA-2048 by 2026 

and a 1/2 chance by 
2031.”

— Michele Mosca, 
University of Waterloo, 2015

https://eprint.iacr.org/2015/1075
http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf
https://globalriskinstitute.org/publications/quantum-threat-timeline/

https://eprint.iacr.org/2015/1075
http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf
https://globalriskinstitute.org/publications/quantum-threat-timeline/


Post-quantum cryptography
a.k.a. quantum-resistant 
algorithms

Cryptography believed to 
be resistant to attacks by 
quantum computers

Uses only classical (non-
quantum) operations to 
implement

Hash-based 
& symmetric

Multivariate 
quadratic

Code-based Lattice-
based

Elliptic 
curve 

isogenies
15
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Confidence in quantum-resistance

Fast computation Small communication

Pick ≤ 2



Standardizing post-quantum cryptography
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Aug. 2015 (Jan. 2016)

“IAD will initiate a 
transition to quantum 
resistant algorithms in 
the not too distant
future.”

– NSA Information 
Assurance Directorate, 

Aug. 2015



NIST Post-quantum Crypto Project timeline

18http://www.nist.gov/pqcrypto

2022-23

Draft
standard

Nov.
2017

Submission
deadline

Mar.
2019

Round 2
deadline

Round 1: 
69 schemes
1/3 signatures
2/3 PKE

Round 2:
26 schemes
9 signatures
17 PKE

Oct.
2020

Round 3
deadline

Round 3:
Finalists: 
• 3 signatures
• 4 PKE
Alternates:
• 3 signatures
• 5 PKE

2024

Final
standard

Dec.
2016

Call for PQ
proposals

2022-23

Round 4

http://www.nist.gov/pqcrypto


Benchmarking post-quantum crypto 
in TLS
Christian Paquin, Douglas Stebila, Goutam Tamvada. 
PQCrypto 2020.
https://eprint.iacr.org/2019/1447
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https://eprint.iacr.org/2019/1447


Goal

20

•Measure effect of network latency and packet 
loss rate on handshake completion time for post-
quantum connections of various sizes

•Out of scope:
• Effect of different CPU speeds from client or server
• Effect of different post-quantum algorithms on server 
throughput



Related work
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• [BCNS15] and [BCD+16] measured the impact of 
their post-quantum key-exchange schemes on the 
performance of an Apache server running TLS 1.2

•[KS19] and [SKD20] measured the impact of post-
quantum signatures in TLS 1.3 on handshake time 
(with various server distances), and handshake 
failure rate and throughput for a heavily loaded 
server

[BCNS15] Bos, Costello, Naehrig, Stebila. IEEE S&P 2015. https://eprint.iacr.org/2014/599
[BCD+16] Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. ACM CCS 2016. https://eprint.iacr.org/2016/659
[KS19] Kampanakis, Sikeriis. https://eprint.iacr.org/2019/1276
[SKD20] Sikeridis, Kampanaokis, Devetsikiotis. NDSS 2020. https://eprint.iacr.org/2020/071

https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2019/1276
https://eprint.iacr.org/2020/071


Related work: Internet-wide experiments
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Langley, 2016. https://www.imperialviolet.org/2016/11/28/cecpq1.html
Langley, 2018. https://www.imperialviolet.org/2018/12/12/cecpq2.html
Sullivan, Kwiatkowski, Langley, Levin, Mislove, Valenta. NIST 2nd PQC Standardization Conference 2019. https://csrc.nist.gov/Presentations/2019/measuring-
tls-key-exchange-with-post-quantum-kem

2016
Google, with 
NewHope in 
TLS 1.2

Google, 
with “dummy 
extensions”

2018 2019
Google and 
Cloudflare, 

with SIKE and 
NTRU-HRSS 

in TLS 1.3

https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://csrc.nist.gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem


What if you 
don’t have 

billions of clients 
and 

millions of 
servers?

(Inspired by NetMirage and Mininet)
Emulate the network!

+ more control over 
experiment parameters

+ easier to isolate 
effects of network 

characteristics

– loss in realism
23



Network emulation in Linux
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•Kernel can create network namespaces: 
Independent copies of the kernel’s network stack

•Virtual ethernet devices can be created to 
connect the two namespaces

•netem (network emulation) kernel module
• Can instruct kernel to apply a specified delay to 
packets 

• Can instruct kernel to drop packets with a specified 
probability



Open Quantum Safe Project

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

liboqs

key exchange / KEMs signatures

isogenies code-based lattice-
based

multi-variate 
polynomial

hash-based 
/ symmetric

OpenSSL
S/MIME, TLS 1.3, X.509

OpenSSL 3 provider
BoringSSL

Open
SSH

Language 
SDKs

C#, C++, Go, 
Java, Python, 

Rust

Apache 
httpd nginx curl, 

links
Open
VPN

C language library, 
common API
• x86/x64 (Linux, 

Mac, Windows)
• ARM (Android, 

Linux)

Integration into forks 
of widely used open-
source projects

Use in applications Chromium

Industry partners:
• Amazon Web 

Services
• evolutionQ
• IBM Research
• Microsoft Research

Additional contributors:
• Cisco
• Senetas
• PQClean project
• Individuals

Financial support:
• AWS
• Canadian Centre 

for Cyber Security
• NSERC
• Unitary Fund

https://openquantumsafe.org/
https://github.com/open-quantum-safe/


Network emulation experiment (contd.)

26Icons from https://ionicons.com/

s_timer

nginx

s_timer

s_timer

s_timer

nginx
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Key 
exchange 
in TLS 1.3
95th percentile
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Conclusions

18

• On fast, reliable network links, the cost of public key 
cryptography dominates the median TLS establishment time, but 
does not substantially affect the 95th percentile establishment 
time

• On unreliable network links (packet loss rates >= 3%), 
communication sizes come to govern handshake completion 
time

• As application data sizes grow, the relative cost of TLS 
handshake establishment diminishes compared to application 
data transmission



Hybrid key exchange in TLS 1.3
draft-ietf-tls-hybrid-design-03
Douglas Stebila, Scott Fluhrer, Shay Gueron
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03


Cautious "hybrid" approach

35

•Some proposed post-quantum solutions could be 
broken

•Hybrid approach: use traditional and post-quantum 
simultaneously to reduce risk during transition

traditional post-
quantum hybrid



Hybrid approach
•Permit simultaneous use of traditional and post-
quantum key exchange

•Enable early adopters to get post-quantum security 
without discarding security of existing algorithms

•Why do this? 
• Uncertainty re: newer cryptographic assumptions
• Temporary need to keep traditional algorithms for e.g.
FIPS certification



Goals
Define data structures 
for negotiation, 
communication, and 
shared secret 
calculation for hybrid* 
key exchange

•Hybrid/composite 
certificates or digital 
signatures

•Selecting which post-
quantum algorithms to 
use in TLS

* Some people use the word “composite” instead of “hybrid”.

Non-goals



Mechanism
Idea: Each desired 
combination of 
traditional + post-
quantum algorithm will 
be a new (opaque) key 
exchange “group”

• Negotiation: new named groups 
for each desired combination will 
need to be standardized

• Key shares: concatenate key 
shares for each constituent 
algorithm

• Shared secret calculation: 
concatenate shared secrets for 
each constituent algorithm and 
use as input to key schedule



Other design options

• 2 vs ≥2 
algorithms

• Extension for 
representing 
algorithm 
options and 
constraints

• Separately list 
key shares for 
each algorithm

• Use extensions 
for extra key 
shares

See Appendix A of draft for related work and Appendix B for detailed discussion of other design options.

• Apply KDF before 
inserting into key 
schedule

• XOR shares
• Insert into 
different parts of 
TLS key schedule

Negotiation Key shares Shared secret



Securely combining keying material
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Is it okay to use 
concatenation?

ss = k1 || k2

ss = H(k1 || k2)

Note concatenation is the
primary hybrid method 
approved by NIST.

• Assume at least one of k1 or 
k2 is indistinguishable from 
random.

• If H is a random oracle, then 
ss is indistinguishable from 
random.

• If k1 and k2 are fixed length 
and H is a dual PRF in either
half of its input, then ss is 
indistinguishable from 
random.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf#page=10

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf


Securely combining keying material

41

Is it okay to use 
concatenation?

ss = k1 || k2

ss = H(k1 || k2)

• Aviram et al: If H is not 
collision resistant, then 
concatenating secrets may 
be dangerous.

• Attack if k1 is adversary-
controlled and variable length, 
like APOP or CRIME attacks.

• Applies to other parts of the 
TLS 1.3 key schedule.

• Currently discussing impact 
and mitigation.

Aviram, Dowling, Komargodski, Paterson, Ronen, Yogev. Concatenating secrets may be dangerous, August 2021. 
https://github.com/nimia/kdf_public

https://github.com/nimia/kdf_public


New protocol designs: KEMTLS
Peter Schwabe, Douglas Stebila, Thom Wiggers
ACM CCS 2020. https://eprint.iacr.org/2020/534
ESORICS 2021. https://eprint.iacr.org/2021/779

42

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779


Authenticated key exchange

43

•Two parties establish a shared secret over a 
public communication channel



Vast literature on AKE protocols

44

• Many security definitions capturing various adversarial 
powers: BR, CK, eCK, …

• Different types of authentication credentials: public key, 
shared secret key, password, identity-based, …

• Additional security goals: weak/strong forward secrecy, 
key compromise impersonation resistance, post-compromise 
security, …

• Additional protocol functionality: multi-stage, ratcheting, …
• Group key exchange
• Real-world protocols: TLS, SSH, Signal, IKE, ISO, EMV, …
• …



Explicit
authentication

Alice is assured that 
only Bob would be 

able to compute the 
shared secret

45

Alice receives 
assurance that she 

really is talking to Bob

Implicit
authentication



Explicitly authenticated key exchange:
Signed Diffie–Hellman

46

Alice Bob

(pkA, skA) SIG.KeyGen() (pkB , skB) SIG.KeyGen()

obtain pkB obtain pkA

x $ {0, . . . , q � 1}
X  g

x
X

y $ {0, . . . , q � 1}
Y  g

y

�B  SIG.Sign(skB , AkBkXkY )Y,�B

�A  SIG.Sign(skA, AkBkXkY ) �A

k  H(sid, Y x) k  H(sid,Xy)

application data

using authenticated encryption



Implicitly authenticated key exchange:
Double-DH

47

Alice Bob

skA $ {0, . . . , q � 1} skB  $ {0, . . . , q � 1}
pkA  g

skA pkB  g
skB

obtain pkB obtain pkA

x $ {0, . . . , q � 1} y $ {0, . . . , q � 1}
X  g

x
Y  g

y
X

Y

k  H(sid, pk
skA
B kY x) k  H(sid, pk

skB
A kXy)

application data

using authenticated encryption



Problem
post-quantum 

signatures
are big

48



Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66

49



Solution
use 

post-quantum KEMs 
for authentication

50



Key encapsulation mechanisms (KEMs)

51

An abstraction of Diffie–Hellman key exchange
<latexit sha1_base64="RDVfI7FP0yyVQqr+2G8wBIqhKDQ=">AAACQ3icbVDLSgNBEJz1bXxFPXoZjEIECbs5qEdRREGECEaFJITZSW8cMjO7zPSKYdnf8Gu8xn/wG7yJRwU3D8SoBQPV1d10TfmRFBZd98WZmJyanpmdm88tLC4tr+RX165tGBsOVR7K0Nz6zIIUGqooUMJtZIApX8KN3znu92/uwVgR6ivsRtBQrK1FIDjDTGrm3a1i1NmltrND621AS+uK4Z0NkvOTi7T0XUD3FHRa3NnKNf MFt+QOQP8Sb0QKZIRKM/9Rb4U8VqCRS2ZtzXMjbCTMoOAS0lw9thAx3mFtqGVUMwW2kQx+ltLtTGnRIDTZ00gH6s+NhClru8rPJgdWf/f64n+9WozBQSMROooRNB8eCmJJMaT9mGhLGOAouxlh3IjMK+V3zDCOWZhjVx6GVsc00LESCCrtx+X9DucvuS6XvL2Se1kuHB6NgpsjG2STFIlH9skhOSMVUiWcPJIn0iPPTs95dd6c9+HohDPaWSdjcD6/ALcUsLc=</latexit>

(pk, sk) KEM.KeyGen()

<latexit sha1_base64="XPVAcqpbuqaH8/jH2n2W0moLbT0="></latexit>

(ct, k) KEM.Encaps(pk)

<latexit sha1_base64="odAnpH0dxdWK5HcWBvymtpgGo+8=">AAACQnicbVDLSgNBEJz1bXxFPXoZjEIEibse1KP4AEGECEYDSQizk944ZGZ2mekVw7Kf4dd41Y/wF7yJVw9uHoKJFgxUV3fTNeVHUlh03TdnYnJqemZ2bj63sLi0vJJfXbu1YWw4VHgoQ1P1mQUpNFRQoIRqZIApX8Kd3znt9e8ewFgR6hvsRtBQrK1FIDjDTGrm97Y6tN4GtLSuGN7bILk8v0pLP8UZcBbZtGg7u5TjzlaumS +4JbcP+pd4Q1IgQ5Sb+a96K+SxAo1cMmtrnhthI2EGBZeQ5uqxhYjxDmtDLaOaKbCNpP+xlG5nSosGocmeRtpXf28kTFnbVX422Tc83uuJ//VqMQZHjUToKEbQfHAoiCXFkPZSoi1hgKPsZoRxIzKvlN8zwzhmWY5ceRxYHdFAx0ogqLQXlzcezl9yu1/yDkru9X7h+GQY3BzZIJukSDxySI7JBSmTCuHkiTyTF/LqvDjvzofzORidcIY762QEztc31+aw0A==</latexit>

k  KEM.Decaps(sk, ct)

<latexit sha1_base64="PTKmRgTTD1VvdUJnVXjDNS/R8xM=">AAACFXicbVC7TsMwFHV4lvIqMLJYtEhMVdIBGCtYGItEH1IbVY5701q1nch2EFXUX2AtP8OGWJn5FwacNgNtOZKlo3Pu1T0+QcyZNq777Wxsbm3v7Bb2ivsHh0fHpZPTlo4SRaFJIx6pTkA0cCahaZjh0IkVEBFwaAfj+8xvP4PSLJJPZhKDL8hQspBRYjKpEo8r/VLZrbpz4HXi5aSMcjT6pZ/eIKKJAGkoJ1p3PTc2fkqUYZTDtNhLNMSEjskQupZKIkD76TzrFF9aZYDDSNknDZ6rfzdSIrSeiMBOCmJGetXLxP+8bmLCWz9lMk4MSLo4FCYcmwhnH8cDpoAaPrGEUMVsVkxHRBFqbD1LV14WUZc0kIlgBsS0aOvyVstZJ61a1buuuo+1cv0uL66AztEFukIeukF19IAaqIkoGqFXNENvzsx5dz6cz8XohpPvnKElOF+/66GfrQ==</latexit>

pk

<latexit sha1_base64="qvRR5ShOI+DZk1O2A7o45sTKiQM=">AAACFXicbVDLTsJAFJ36RHyhLt00gokr0rJQl0Q3LjGRRwINmQ63MGFm2szcGknDL7jFn3Fn3Lr2X1zYQhcCnmSSk3PuzT1z/Ehwg47zbW1sbm3v7Bb2ivsHh0fHpZPTlgljzaDJQhHqjk8NCK6giRwFdCINVPoC2v74PvPbz6AND9UTTiLwJB0qHnBGMZMqDCv9UtmpOnPY68TNSZnkaPRLP71ByGIJCpmgxnRdJ0IvoRo5EzAt9mIDEWVjOoRuShWVYLxknnVqX6bKwA5CnT6F9lz9u5FQacxE+umkpDgyq14m/ud1YwxuvYSrKEZQbHEoiIWNoZ193B5wDQzFJCWUaZ5mtdmIasowrWfpyssi6pIGKpYcQU6LaV3uajnrpFWrutdV57FWrt/lxRXIObkgV8QlN6ROHkiDNAkjI/JKZuTNmlnv1of1uRjdsPKdM7IE6+sX5NifqQ==</latexit>

ct



Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66

52

KEM Public key (bytes) Ciphertext (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Kyber Lattice-based (MLWE) 800 768
NTRU Lattice-based (NTRU) 699 699
Saber Lattice-based (MLWR) 672 736
SIKE Isogeny-based 330 330
SIKE compressed Isogeny-based 197 197
Classic McEliece Code-based 261,120 128



Implicitly authenticated KEX is not new

53

•DH-based: SKEME, 
MQV, HMQV, …

•KEM-based: 
BCGP09, FSXY12, …

• RSA key transport in TLS ≤ 
1.2

• Lacks forward secrecy
• Signal, Noise, Wireguard

• DH-based
• Different protocol flows

• OPTLS
• DH-based
• Requires a non-interactive key 

exchange (NIKE)

In theory In practice



“KEMTLS” 
handshake

KEM for 
ephemeral key exchange

KEM for 
server-to-client

authenticated key exchange

Combine shared secrets

54



Algorithm choices

55

KEM for ephemeral 
key exchange

• IND-CCA (or IND-1CCA)
• Want small public key 

+ small ciphertext

KEM for authenticated 
key exchange

• IND-CCA
• Want small public key 

+ small ciphertext

Signature scheme for 
intermediate CA

• Want small public key 
+ small signature

Signature scheme for 
root CA

• Want small signature



4 scenarios

56

1. Minimize size when intermediate certificate 
transmitted

2. Minimize size when intermediate certificate 
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions



Signed KEX 
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium, 
eCDH X25519, 
Falcon, 
Kyber, 
NTRU, 
Rainbow,
rSA-2048, 
SIKE, 
XMSS’

57Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.



Signed KEX 
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium, 
eCDH X25519, 
Falcon, 
Kyber, 
NTRU, 
Rainbow,
rSA-2048, 
SIKE, 
XMSS’
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KEMTLS benefits
• Size-optimized KEMTLS requires < ½ communication of size-

optimized PQ signed-KEM
• Speed-optimized KEMTLS uses 90% fewer server CPU cycles 

and still reduces communication
• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)

• No extra round trips required until client starts sending 
application data

• Smaller trusted code base (no signature generation on 
client/server)



Security

60

Security model: multi-
stage key exchange, 
extending [DFGS21]
•Key indistinguishability
•Forward secrecy
•Implicit and explicit 
authentication

Ingredients in security proof:
• IND-CCA for long-term 
KEM

• IND-1CCA for ephemeral 
KEM

• Collision-resistant hash 
function

• Dual-PRF security of HKDF
• EUF-CMA of HMAC

[DFGS21] Dowling, Fischlin, Günther, Stebila. Journal of Cryptology, 2021. https://eprint.iacr.org/2020/1044

https://eprint.iacr.org/2020/1044


Security subtleties: authentication

61

•Client’s first application 
flow can’t be read by 
anyone other than 
intended server, but 
client doesn’t know 
server is live at the time 
of sending

•Explicit authentication 
once key confirmation 
message transmitted

•Retroactive explicit 
authentication of earlier 
keys 

[DGK06] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

Implicit authentication Explicit authentication

https://eprint.iacr.org/2006/280


Security subtleties: downgrade resilience

62

• Choice of cryptographic 
algorithms not 
authenticated at the time 
the client sends its first 
application flow

• MITM can’t trick client into 
using undesirable 
algorithm

• But MITM can trick them 
into temporarily using 
suboptimal algorithm

•Formally model 3 levels 
of downgrade-resilience:
1. Full downgrade 

resilience
2. No downgrade 

resilience to 
unsupported algorithms

3. No downgrade 
resilience



Security subtleties: forward secrecy

63

Does compromise of a 
party’s long-term key 
allow decryption of past 
sessions?

• Weak forward secrecy 1: 
adversary passive in the test 
stage

• Weak forward secrecy 2: 
adversary passive in the test 
stage or never corrupted 
peer’s long-term key

• Forward secrecy: adversary 
passive in the test stage or 
didn’t corrupt peer’s long-term 
key before acceptance



Variant: KEMTLS with client authentication

64

1. Client has a long-term KEM public key
2. Client transmits it encrypted under key derived 

from 
a) server long-term KEM key exchange
b) ephemeral KEM key exchange

•Adds extra round trip



Variant: Pre-distributed public keys
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What if server public 
keys are pre-
distributed?

• Cached in a browser
• Pinned in mobile apps
• Embedded in IoT 
devices

• Out-of-band (e.g., DNS)
• TLS 1.3: RFC 7924

TLS 1.3 already 
supports pre-shared 
symmetric keys

• Harder(?) key 
management problem

• Different compromise 
model



KEMTLS-PDK
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•Alternate KEMTLS protocol flow when server 
certificates are known in advance

https://thomwiggers.nl/publication/kemtlspdk/

https://thomwiggers.nl/publication/kemtlspdk/


KEMTLS-PDK benefits
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•Additional bandwidth savings
•Makes some PQ algorithms viable

• Large public keys, small ciphertexts/signatures: 
Classic McEliece and Rainbow

•Client authentication 1 round-trip earlier if 
proactive

•Explicit server authentication 1 round-trip earlier 
• => better downgrade resilience
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Other security properties
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• Client certificate encrypted
• Server certificate encrypted
• Server identity not 
protected

• Due to Server Name 
Indication extension

• May be able to combine 
KEMTLS-PDK with 
Encrypted ClientHello?

• KEMTLS and KEMTLS-PDK 
don’t use signatures for 
authentication

• Yields offline deniability
• Judge cannot distinguish 

honest transcript from forgery
• Does not yield online 

deniability
• When one party doesn’t follow 

protocol or colludes with jduge

Anonymity Deniability



TLS ecosystem is complex – lots to consider!
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•Datagram TLS
•Use of TLS handshake in other protocols 

• e.g. QUIC
•Application-specific behaviour

• e.g. HTTP3 SETTINGS frame not server authenticated
•PKI involving KEM public keys
•Long tail of implementations
•…



X.509 certificates for KEM public keys:
Proof of possession
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How does requester prove possession of corresponding 
secret keys?

• Interactive challenge-response protocol: RFC 4210 Sect. 5.2.8.3
• Send certificate back encrypted under subject public key RFC 4210 

Sect. 5.2.8.2
• Weird confidentiality requirement on certificate. Maybe broken by Certificate 

Transparency?
• Non-interactive certificate signing requests: Not a signature scheme!

• Research in progress: Can build a not-too-inefficient Picnic-like signature 
scheme from the KEM operation

• Kyber proof of possession: 227 KB, < 1 sec proof generation and verifcation



Transitioning the TLS protocol to post-quantum security
Douglas Stebila

Benchmarking and 
prototypes
Open Quantum Safe project
https://eprint.iacr.org/2019/1447 • https://openquantumsafe.org • 
https://github.com/open-quantum-safe/

Hybrid key exchange in 
TLS
Working towards standardization
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

KEMTLS
Implicitly authenticated TLS without 
handshake signatures using KEMs
• Saves bytes on the wire and server CPU 

cycles
• Variants for client authentication and pre-

distributed public keys
• Lots of work to make viable in TLS 

ecosystem, including certificates
https://eprint.iacr.org/2020/534 • https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
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https://www.douglas.stebila.ca/research/presentations/

https://eprint.iacr.org/2019/1447
https://openquantumsafe.org/
https://github.com/open-quantum-safe/
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://www.douglas.stebila.ca/research/presentations/


KEMTLS



KEMTLS
with client 

authentication



TLS 1.3 and KEMTLS size of public key objects
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TLS 1.3 and KEMTLS crypto & handshake time
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KEMTLS-PDK overview
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KEMTLS-PDK
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KEMTLS-PDK
with proactive 

client 
authentication
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Communication 
sizes

KEMTLS

TLS 1.3 w/cached 
server certs

KEMTLS-PDK
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Handshake times, unilateral authentication
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Handshake times, mutual authentication
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https://openquantumsafe.org https://github.com/open-quantum-safe



liboqs
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•C library with common 
API for post-quantum 
signature schemes and 
key encapsulation 
mechanisms

•MIT License
•Builds on Windows, 
macOS, Linux; x86_64, 
ARM v8

•Version 0.7.0 released 
August 2021

•Includes all Round 3 
finalists and alternate 
candidates
• (except GeMSS)
• Some implementations 
still Round 2 versions

https://openquantumsafe.org/liboqs/

https://openquantumsafe.org/liboqs/


TLS 1.3 implementations
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OQS-OpenSSL 
1.1.1

OQS-OpenSSL 3 
provider

OQS-BoringSSL

PQ key exchange in TLS 1.3 Yes Yes Yes

Hybrid key exchange in TLS 1.3 Yes Coming soon Yes

PQ certificates and signature authentication in TLS 
1.3

Yes No Yes

Hybrid certificates and signature authentication in TLS 
1.3

Yes No No

https://openquantumsafe.org/applications/tls/

Using draft-ietf-tls-hybrid-design for hybrid key exchange

Interoperability test server running at https://test.openquantumsafe.org

https://openquantumsafe.org/applications/tls/
https://test.openquantumsafe.org/


Applications
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•Demonstrator 
application integrations 
into:
• Apache
• nginx
• haproxy
• curl
• Chromium

• In most cases required 
few/no modifications to 
work with updated 
OpenSSL

•Runnable Docker images 
available for download

https://openquantumsafe.org/applications/tls/#demo-integrations

https://openquantumsafe.org/applications/tls/


Benchmarking
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•New benchmarking portal at 
https://openquantumsafe.org/benchmarking/

•Core algorithm speed and memory usage
•TLS performance in ideal network conditions
•Intel AVX2 and ARM 64

https://openquantumsafe.org/benchmarking/

