
Transitioning the TLS protocol
to post-quantum security

Douglas Stebila

https://www.douglas.stebila.ca/research/presentations/
University of Surrey • 2021-09-23

https://www.douglas.stebila.ca/research/presentations/

2

Cryptography @ University of Waterloo

3

• UW involved in 4 NIST PQC Round 3 submissions:
• Finalists: CRYSTALS-Kyber, NTRU
• Alternates: FrodoKEM, SIKE

• Elliptic curves: David Jao, Alfred Menezes, (Scott Vanstone)
• More cryptography: Sergey Gorbunov, Mohammad Hajiabadi, Doug Stinson
• Privacy-enhancing technologies: Ian Goldberg
• Quantum cryptanalysis: Michele Mosca
• Quantum cryptography: Norbert Lütkenhaus, Thomas Jennewein, Debbie

Leung
• Even more cryptography and security: Gord Agnew, Vijay Ganesh, Guang

Gong, Sergey Gorbunov, Anwar Hasan, Florian Kerschbaum

Background

4

5

6

Cryptographic building blocks

7

Public-key
cryptography

RSA or elliptic
curve

signatures

Elliptic curve
Diffie–Hellman
key exchange

Symmetric
cryptography

AES
encryption

AES GCM
integrity

TLS 1.3
handshake

Signed Diffie–Hellman

8

Diffie-Hellman key exchange

Digital signature

Cryptographic building blocks

9

Public-key
cryptography

RSA or elliptic
curve

signatures

Elliptic curve
Diffie–Hellman
key exchange

Symmetric
cryptography

AES
encryption

AES GCM
integrity

Based on
difficulty of

factoring large
numbers

– not quantum
resistant!

Based on difficulty of

computing discrete
logarithms

– not quantum resistant!

TLS 1.3
handshake

Signed Diffie–Hellman
Post-Quantum!!!

10

Outline

Post-quantum

Benchmarking

Hybrid standardization

New protocol designs
(KEMTLS)

11

Why post-quantum?

12

Quantum threat to information security

13

Large-scale
general-purpose

quantum
computers could

break some
encryption
schemes

Need to migrate
encryption to

quantum-
resistant

algorithms

When should we
start the
process?

When will a large-scale
quantum computer be
built?

14

“I estimate a 1/7
chance of breaking
RSA-2048 by 2026

and a 1/2 chance by
2031.”

— Michele Mosca,
University of Waterloo, 2015

https://eprint.iacr.org/2015/1075
http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf
https://globalriskinstitute.org/publications/quantum-threat-timeline/

https://eprint.iacr.org/2015/1075
http://qurope.eu/system/files/u7/93056_Quantum%20Manifesto_WEB.pdf
https://globalriskinstitute.org/publications/quantum-threat-timeline/

Post-quantum cryptography
a.k.a. quantum-resistant
algorithms

Cryptography believed to
be resistant to attacks by
quantum computers

Uses only classical (non-
quantum) operations to
implement

Hash-based
& symmetric

Multivariate
quadratic

Code-based Lattice-
based

Elliptic
curve

isogenies
15

16

Confidence in quantum-resistance

Fast computation Small communication

Pick ≤ 2

Standardizing post-quantum cryptography

17

Aug. 2015 (Jan. 2016)

“IAD will initiate a
transition to quantum
resistant algorithms in
the not too distant
future.”

– NSA Information
Assurance Directorate,

Aug. 2015

NIST Post-quantum Crypto Project timeline

18http://www.nist.gov/pqcrypto

2022-23

Draft
standard

Nov.
2017

Submission
deadline

Mar.
2019

Round 2
deadline

Round 1:
69 schemes
1/3 signatures
2/3 PKE

Round 2:
26 schemes
9 signatures
17 PKE

Oct.
2020

Round 3
deadline

Round 3:
Finalists:
• 3 signatures
• 4 PKE
Alternates:
• 3 signatures
• 5 PKE

2024

Final
standard

Dec.
2016

Call for PQ
proposals

2022-23

Round 4

http://www.nist.gov/pqcrypto

Benchmarking post-quantum crypto
in TLS
Christian Paquin, Douglas Stebila, Goutam Tamvada.
PQCrypto 2020.
https://eprint.iacr.org/2019/1447

19

https://eprint.iacr.org/2019/1447

Goal

20

•Measure effect of network latency and packet
loss rate on handshake completion time for post-
quantum connections of various sizes

•Out of scope:
• Effect of different CPU speeds from client or server
• Effect of different post-quantum algorithms on server
throughput

Related work

21

• [BCNS15] and [BCD+16] measured the impact of
their post-quantum key-exchange schemes on the
performance of an Apache server running TLS 1.2

•[KS19] and [SKD20] measured the impact of post-
quantum signatures in TLS 1.3 on handshake time
(with various server distances), and handshake
failure rate and throughput for a heavily loaded
server

[BCNS15] Bos, Costello, Naehrig, Stebila. IEEE S&P 2015. https://eprint.iacr.org/2014/599
[BCD+16] Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. ACM CCS 2016. https://eprint.iacr.org/2016/659
[KS19] Kampanakis, Sikeriis. https://eprint.iacr.org/2019/1276
[SKD20] Sikeridis, Kampanaokis, Devetsikiotis. NDSS 2020. https://eprint.iacr.org/2020/071

https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2019/1276
https://eprint.iacr.org/2020/071

Related work: Internet-wide experiments

22

Langley, 2016. https://www.imperialviolet.org/2016/11/28/cecpq1.html
Langley, 2018. https://www.imperialviolet.org/2018/12/12/cecpq2.html
Sullivan, Kwiatkowski, Langley, Levin, Mislove, Valenta. NIST 2nd PQC Standardization Conference 2019. https://csrc.nist.gov/Presentations/2019/measuring-
tls-key-exchange-with-post-quantum-kem

2016
Google, with
NewHope in
TLS 1.2

Google,
with “dummy
extensions”

2018 2019
Google and
Cloudflare,

with SIKE and
NTRU-HRSS

in TLS 1.3

https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://csrc.nist.gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem

What if you
don’t have

billions of clients
and

millions of
servers?

(Inspired by NetMirage and Mininet)
Emulate the network!

+ more control over
experiment parameters

+ easier to isolate
effects of network

characteristics

– loss in realism
23

Network emulation in Linux

24

•Kernel can create network namespaces:
Independent copies of the kernel’s network stack

•Virtual ethernet devices can be created to
connect the two namespaces

•netem (network emulation) kernel module
• Can instruct kernel to apply a specified delay to
packets

• Can instruct kernel to drop packets with a specified
probability

Open Quantum Safe Project

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

liboqs

key exchange / KEMs signatures

isogenies code-based lattice-
based

multi-variate
polynomial

hash-based
/ symmetric

OpenSSL
S/MIME, TLS 1.3, X.509

OpenSSL 3 provider
BoringSSL

Open
SSH

Language
SDKs

C#, C++, Go,
Java, Python,

Rust

Apache
httpd nginx curl,

links
Open
VPN

C language library,
common API
• x86/x64 (Linux,

Mac, Windows)
• ARM (Android,

Linux)

Integration into forks
of widely used open-
source projects

Use in applications Chromium

Industry partners:
• Amazon Web

Services
• evolutionQ
• IBM Research
• Microsoft Research

Additional contributors:
• Cisco
• Senetas
• PQClean project
• Individuals

Financial support:
• AWS
• Canadian Centre

for Cyber Security
• NSERC
• Unitary Fund

https://openquantumsafe.org/
https://github.com/open-quantum-safe/

Network emulation experiment (contd.)

26Icons from https://ionicons.com/

s_timer

nginx

s_timer

s_timer

s_timer

nginx

27

Key
exchange
in TLS 1.3
median

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

28

Key
exchange
in TLS 1.3
median

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

29

Key
exchange
in TLS 1.3
median

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

30

Key
exchange
in TLS 1.3
median

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

31

Key
exchange
in TLS 1.3
median

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

32

Key
exchange
in TLS 1.3
95th percentile

ha
nd

sh
ak

e
co

m
pl

et
io

n
tim

e
(m

s)

packet loss rate %

Conclusions

18

• On fast, reliable network links, the cost of public key
cryptography dominates the median TLS establishment time, but
does not substantially affect the 95th percentile establishment
time

• On unreliable network links (packet loss rates >= 3%),
communication sizes come to govern handshake completion
time

• As application data sizes grow, the relative cost of TLS
handshake establishment diminishes compared to application
data transmission

Hybrid key exchange in TLS 1.3
draft-ietf-tls-hybrid-design-03
Douglas Stebila, Scott Fluhrer, Shay Gueron
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

Cautious "hybrid" approach

35

•Some proposed post-quantum solutions could be
broken

•Hybrid approach: use traditional and post-quantum
simultaneously to reduce risk during transition

traditional post-
quantum hybrid

Hybrid approach
•Permit simultaneous use of traditional and post-
quantum key exchange

•Enable early adopters to get post-quantum security
without discarding security of existing algorithms

•Why do this?
• Uncertainty re: newer cryptographic assumptions
• Temporary need to keep traditional algorithms for e.g.
FIPS certification

Goals
Define data structures
for negotiation,
communication, and
shared secret
calculation for hybrid*
key exchange

•Hybrid/composite
certificates or digital
signatures

•Selecting which post-
quantum algorithms to
use in TLS

* Some people use the word “composite” instead of “hybrid”.

Non-goals

Mechanism
Idea: Each desired
combination of
traditional + post-
quantum algorithm will
be a new (opaque) key
exchange “group”

• Negotiation: new named groups
for each desired combination will
need to be standardized

• Key shares: concatenate key
shares for each constituent
algorithm

• Shared secret calculation:
concatenate shared secrets for
each constituent algorithm and
use as input to key schedule

Other design options

• 2 vs ≥2
algorithms

• Extension for
representing
algorithm
options and
constraints

• Separately list
key shares for
each algorithm

• Use extensions
for extra key
shares

See Appendix A of draft for related work and Appendix B for detailed discussion of other design options.

• Apply KDF before
inserting into key
schedule

• XOR shares
• Insert into
different parts of
TLS key schedule

Negotiation Key shares Shared secret

Securely combining keying material

40

Is it okay to use
concatenation?

ss = k1 || k2

ss = H(k1 || k2)

Note concatenation is the
primary hybrid method
approved by NIST.

• Assume at least one of k1 or
k2 is indistinguishable from
random.

• If H is a random oracle, then
ss is indistinguishable from
random.

• If k1 and k2 are fixed length
and H is a dual PRF in either
half of its input, then ss is
indistinguishable from
random.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf#page=10

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf

Securely combining keying material

41

Is it okay to use
concatenation?

ss = k1 || k2

ss = H(k1 || k2)

• Aviram et al: If H is not
collision resistant, then
concatenating secrets may
be dangerous.

• Attack if k1 is adversary-
controlled and variable length,
like APOP or CRIME attacks.

• Applies to other parts of the
TLS 1.3 key schedule.

• Currently discussing impact
and mitigation.

Aviram, Dowling, Komargodski, Paterson, Ronen, Yogev. Concatenating secrets may be dangerous, August 2021.
https://github.com/nimia/kdf_public

https://github.com/nimia/kdf_public

New protocol designs: KEMTLS
Peter Schwabe, Douglas Stebila, Thom Wiggers
ACM CCS 2020. https://eprint.iacr.org/2020/534
ESORICS 2021. https://eprint.iacr.org/2021/779

42

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779

Authenticated key exchange

43

•Two parties establish a shared secret over a
public communication channel

Vast literature on AKE protocols

44

• Many security definitions capturing various adversarial
powers: BR, CK, eCK, …

• Different types of authentication credentials: public key,
shared secret key, password, identity-based, …

• Additional security goals: weak/strong forward secrecy,
key compromise impersonation resistance, post-compromise
security, …

• Additional protocol functionality: multi-stage, ratcheting, …
• Group key exchange
• Real-world protocols: TLS, SSH, Signal, IKE, ISO, EMV, …
• …

Explicit
authentication

Alice is assured that
only Bob would be

able to compute the
shared secret

45

Alice receives
assurance that she

really is talking to Bob

Implicit
authentication

Explicitly authenticated key exchange:
Signed Diffie–Hellman

46

Alice Bob

(pkA, skA) SIG.KeyGen() (pkB , skB) SIG.KeyGen()

obtain pkB obtain pkA

x $ {0, . . . , q � 1}
X g

x
X

y $ {0, . . . , q � 1}
Y g

y

�B SIG.Sign(skB , AkBkXkY)Y,�B

�A SIG.Sign(skA, AkBkXkY) �A

k H(sid, Y x) k H(sid,Xy)

application data

using authenticated encryption

Implicitly authenticated key exchange:
Double-DH

47

Alice Bob

skA $ {0, . . . , q � 1} skB $ {0, . . . , q � 1}
pkA g

skA pkB g
skB

obtain pkB obtain pkA

x $ {0, . . . , q � 1} y $ {0, . . . , q � 1}
X g

x
Y g

y
X

Y

k H(sid, pk
skA
B kY x) k H(sid, pk

skB
A kXy)

application data

using authenticated encryption

Problem
post-quantum

signatures
are big

48

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66

49

Solution
use

post-quantum KEMs
for authentication

50

Key encapsulation mechanisms (KEMs)

51

An abstraction of Diffie–Hellman key exchange
<latexit sha1_base64="RDVfI7FP0yyVQqr+2G8wBIqhKDQ=">AAACQ3icbVDLSgNBEJz1bXxFPXoZjEIECbs5qEdRREGECEaFJITZSW8cMjO7zPSKYdnf8Gu8xn/wG7yJRwU3D8SoBQPV1d10TfmRFBZd98WZmJyanpmdm88tLC4tr+RX165tGBsOVR7K0Nz6zIIUGqooUMJtZIApX8KN3znu92/uwVgR6ivsRtBQrK1FIDjDTGrm3a1i1NmltrND621AS+uK4Z0NkvOTi7T0XUD3FHRa3NnKNf MFt+QOQP8Sb0QKZIRKM/9Rb4U8VqCRS2ZtzXMjbCTMoOAS0lw9thAx3mFtqGVUMwW2kQx+ltLtTGnRIDTZ00gH6s+NhClru8rPJgdWf/f64n+9WozBQSMROooRNB8eCmJJMaT9mGhLGOAouxlh3IjMK+V3zDCOWZhjVx6GVsc00LESCCrtx+X9DucvuS6XvL2Se1kuHB6NgpsjG2STFIlH9skhOSMVUiWcPJIn0iPPTs95dd6c9+HohDPaWSdjcD6/ALcUsLc=</latexit>

(pk, sk) KEM.KeyGen()

<latexit sha1_base64="XPVAcqpbuqaH8/jH2n2W0moLbT0=">AAACRHicbVDLSgNBEJz1bXxFPXoZjEICEnY9qEdRBEEEBZMISQizk944ZGZ2mekVw7Lf4dd41W/wH7yJNxE3D8EYCwaqq7vpmvIjKSy67qszNT0zOze/sJhbWl5ZXcuvb1RtGBsOFR7K0Nz6zIIUGiooUMJtZIApX0LN7572+7V7MFaE+gZ7ETQV62gRCM4wk1p5b6fIcY92S7TRAbS0oRje2SC5OLtMyz/FmeYssmkx6pZ2cq18wS27A9BJ4o1IgYxw1cp/NtohjxVo5JJZW/fcCJsJMyi4hDTXiC1EjHdZB+oZ1UyBbSaDr6V0N1PaNAhN9jTSgfp7I2HK2p7ys8mB2b+9vvhfrx5jcNRMhI5iBM2Hh4JYUgxpPyfaFgY4yl5GGDci80r5HTOMY5bm2JWHodUxDXSsBIJK+3F5f8OZJNX9sndQdq/3C8cno+AWyBbZJkXikUNyTM7JFakQTh7JE3kmL86z8+a8Ox/D0SlntLNJxuB8fQO5QrE8</latexit>

(ct, k) KEM.Encaps(pk)

<latexit sha1_base64="odAnpH0dxdWK5HcWBvymtpgGo+8=">AAACQnicbVDLSgNBEJz1bXxFPXoZjEIEibse1KP4AEGECEYDSQizk944ZGZ2mekVw7Kf4dd41Y/wF7yJVw9uHoKJFgxUV3fTNeVHUlh03TdnYnJqemZ2bj63sLi0vJJfXbu1YWw4VHgoQ1P1mQUpNFRQoIRqZIApX8Kd3znt9e8ewFgR6hvsRtBQrK1FIDjDTGrm97Y6tN4GtLSuGN7bILk8v0pLP8UZcBbZtGg7u5TjzlaumS +4JbcP+pd4Q1IgQ5Sb+a96K+SxAo1cMmtrnhthI2EGBZeQ5uqxhYjxDmtDLaOaKbCNpP+xlG5nSosGocmeRtpXf28kTFnbVX422Tc83uuJ//VqMQZHjUToKEbQfHAoiCXFkPZSoi1hgKPsZoRxIzKvlN8zwzhmWY5ceRxYHdFAx0ogqLQXlzcezl9yu1/yDkru9X7h+GQY3BzZIJukSDxySI7JBSmTCuHkiTyTF/LqvDjvzofzORidcIY762QEztc31+aw0A==</latexit>

k KEM.Decaps(sk, ct)

<latexit sha1_base64="PTKmRgTTD1VvdUJnVXjDNS/R8xM=">AAACFXicbVC7TsMwFHV4lvIqMLJYtEhMVdIBGCtYGItEH1IbVY5701q1nch2EFXUX2AtP8OGWJn5FwacNgNtOZKlo3Pu1T0+QcyZNq777Wxsbm3v7Bb2ivsHh0fHpZPTlo4SRaFJIx6pTkA0cCahaZjh0IkVEBFwaAfj+8xvP4PSLJJPZhKDL8hQspBRYjKpEo8r/VLZrbpz4HXi5aSMcjT6pZ/eIKKJAGkoJ1p3PTc2fkqUYZTDtNhLNMSEjskQupZKIkD76TzrFF9aZYDDSNknDZ6rfzdSIrSeiMBOCmJGetXLxP+8bmLCWz9lMk4MSLo4FCYcmwhnH8cDpoAaPrGEUMVsVkxHRBFqbD1LV14WUZc0kIlgBsS0aOvyVstZJ61a1buuuo+1cv0uL66AztEFukIeukF19IAaqIkoGqFXNENvzsx5dz6cz8XohpPvnKElOF+/66GfrQ==</latexit>

pk

<latexit sha1_base64="qvRR5ShOI+DZk1O2A7o45sTKiQM=">AAACFXicbVDLTsJAFJ36RHyhLt00gokr0rJQl0Q3LjGRRwINmQ63MGFm2szcGknDL7jFn3Fn3Lr2X1zYQhcCnmSSk3PuzT1z/Ehwg47zbW1sbm3v7Bb2ivsHh0fHpZPTlgljzaDJQhHqjk8NCK6giRwFdCINVPoC2v74PvPbz6AND9UTTiLwJB0qHnBGMZMqDCv9UtmpOnPY68TNSZnkaPRLP71ByGIJCpmgxnRdJ0IvoRo5EzAt9mIDEWVjOoRuShWVYLxknnVqX6bKwA5CnT6F9lz9u5FQacxE+umkpDgyq14m/ud1YwxuvYSrKEZQbHEoiIWNoZ193B5wDQzFJCWUaZ5mtdmIasowrWfpyssi6pIGKpYcQU6LaV3uajnrpFWrutdV57FWrt/lxRXIObkgV8QlN6ROHkiDNAkjI/JKZuTNmlnv1of1uRjdsPKdM7IE6+sX5NifqQ==</latexit>

ct

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
Rainbow Multi-variate 60,192 66

52

KEM Public key (bytes) Ciphertext (bytes)

RSA-2048 Factoring 272 256

Elliptic curves Elliptic curve discrete logarithm 32 32

Kyber Lattice-based (MLWE) 800 768
NTRU Lattice-based (NTRU) 699 699
Saber Lattice-based (MLWR) 672 736
SIKE Isogeny-based 330 330
SIKE compressed Isogeny-based 197 197
Classic McEliece Code-based 261,120 128

Implicitly authenticated KEX is not new

53

•DH-based: SKEME,
MQV, HMQV, …

•KEM-based:
BCGP09, FSXY12, …

• RSA key transport in TLS ≤
1.2

• Lacks forward secrecy
• Signal, Noise, Wireguard

• DH-based
• Different protocol flows

• OPTLS
• DH-based
• Requires a non-interactive key

exchange (NIKE)

In theory In practice

“KEMTLS”
handshake

KEM for
ephemeral key exchange

KEM for
server-to-client

authenticated key exchange

Combine shared secrets

54

Algorithm choices

55

KEM for ephemeral
key exchange

• IND-CCA (or IND-1CCA)
• Want small public key

+ small ciphertext

KEM for authenticated
key exchange

• IND-CCA
• Want small public key

+ small ciphertext

Signature scheme for
intermediate CA

• Want small public key
+ small signature

Signature scheme for
root CA

• Want small signature

4 scenarios

56

1. Minimize size when intermediate certificate
transmitted

2. Minimize size when intermediate certificate
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
eCDH X25519,
Falcon,
Kyber,
NTRU,
Rainbow,
rSA-2048,
SIKE,
XMSS’

57Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

Signed KEX
versus

KEMTLS
Labels ABCD:
A = ephemeral KEM
B = leaf certificate
C = intermediate CA
D = root CA
Algorithms: (all level 1)
Dilithium,
eCDH X25519,
Falcon,
Kyber,
NTRU,
Rainbow,
rSA-2048,
SIKE,
XMSS’

58Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

KEMTLS benefits
• Size-optimized KEMTLS requires < ½ communication of size-

optimized PQ signed-KEM
• Speed-optimized KEMTLS uses 90% fewer server CPU cycles

and still reduces communication
• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)

• No extra round trips required until client starts sending
application data

• Smaller trusted code base (no signature generation on
client/server)

Security

60

Security model: multi-
stage key exchange,
extending [DFGS21]
•Key indistinguishability
•Forward secrecy
•Implicit and explicit
authentication

Ingredients in security proof:
• IND-CCA for long-term
KEM

• IND-1CCA for ephemeral
KEM

• Collision-resistant hash
function

• Dual-PRF security of HKDF
• EUF-CMA of HMAC

[DFGS21] Dowling, Fischlin, Günther, Stebila. Journal of Cryptology, 2021. https://eprint.iacr.org/2020/1044

https://eprint.iacr.org/2020/1044

Security subtleties: authentication

61

•Client’s first application
flow can’t be read by
anyone other than
intended server, but
client doesn’t know
server is live at the time
of sending

•Explicit authentication
once key confirmation
message transmitted

•Retroactive explicit
authentication of earlier
keys

[DGK06] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

Implicit authentication Explicit authentication

https://eprint.iacr.org/2006/280

Security subtleties: downgrade resilience

62

• Choice of cryptographic
algorithms not
authenticated at the time
the client sends its first
application flow

• MITM can’t trick client into
using undesirable
algorithm

• But MITM can trick them
into temporarily using
suboptimal algorithm

•Formally model 3 levels
of downgrade-resilience:
1. Full downgrade

resilience
2. No downgrade

resilience to
unsupported algorithms

3. No downgrade
resilience

Security subtleties: forward secrecy

63

Does compromise of a
party’s long-term key
allow decryption of past
sessions?

• Weak forward secrecy 1:
adversary passive in the test
stage

• Weak forward secrecy 2:
adversary passive in the test
stage or never corrupted
peer’s long-term key

• Forward secrecy: adversary
passive in the test stage or
didn’t corrupt peer’s long-term
key before acceptance

Variant: KEMTLS with client authentication

64

1. Client has a long-term KEM public key
2. Client transmits it encrypted under key derived

from
a) server long-term KEM key exchange
b) ephemeral KEM key exchange

•Adds extra round trip

Variant: Pre-distributed public keys

65

What if server public
keys are pre-
distributed?

• Cached in a browser
• Pinned in mobile apps
• Embedded in IoT
devices

• Out-of-band (e.g., DNS)
• TLS 1.3: RFC 7924

TLS 1.3 already
supports pre-shared
symmetric keys

• Harder(?) key
management problem

• Different compromise
model

KEMTLS-PDK

66

•Alternate KEMTLS protocol flow when server
certificates are known in advance

https://thomwiggers.nl/publication/kemtlspdk/

https://thomwiggers.nl/publication/kemtlspdk/

KEMTLS-PDK benefits

67

•Additional bandwidth savings
•Makes some PQ algorithms viable

• Large public keys, small ciphertexts/signatures:
Classic McEliece and Rainbow

•Client authentication 1 round-trip earlier if
proactive

•Explicit server authentication 1 round-trip earlier
• => better downgrade resilience

68

Other security properties

69

• Client certificate encrypted
• Server certificate encrypted
• Server identity not
protected

• Due to Server Name
Indication extension

• May be able to combine
KEMTLS-PDK with
Encrypted ClientHello?

• KEMTLS and KEMTLS-PDK
don’t use signatures for
authentication

• Yields offline deniability
• Judge cannot distinguish

honest transcript from forgery
• Does not yield online

deniability
• When one party doesn’t follow

protocol or colludes with jduge

Anonymity Deniability

TLS ecosystem is complex – lots to consider!

70

•Datagram TLS
•Use of TLS handshake in other protocols

• e.g. QUIC
•Application-specific behaviour

• e.g. HTTP3 SETTINGS frame not server authenticated
•PKI involving KEM public keys
•Long tail of implementations
•…

X.509 certificates for KEM public keys:
Proof of possession

71

How does requester prove possession of corresponding
secret keys?

• Interactive challenge-response protocol: RFC 4210 Sect. 5.2.8.3
• Send certificate back encrypted under subject public key RFC 4210

Sect. 5.2.8.2
• Weird confidentiality requirement on certificate. Maybe broken by Certificate

Transparency?
• Non-interactive certificate signing requests: Not a signature scheme!

• Research in progress: Can build a not-too-inefficient Picnic-like signature
scheme from the KEM operation

• Kyber proof of possession: 227 KB, < 1 sec proof generation and verifcation

Transitioning the TLS protocol to post-quantum security
Douglas Stebila

Benchmarking and
prototypes
Open Quantum Safe project
https://eprint.iacr.org/2019/1447 • https://openquantumsafe.org •
https://github.com/open-quantum-safe/

Hybrid key exchange in
TLS
Working towards standardization
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03

KEMTLS
Implicitly authenticated TLS without
handshake signatures using KEMs
• Saves bytes on the wire and server CPU

cycles
• Variants for client authentication and pre-

distributed public keys
• Lots of work to make viable in TLS

ecosystem, including certificates
https://eprint.iacr.org/2020/534 • https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00

72

https://www.douglas.stebila.ca/research/presentations/

https://eprint.iacr.org/2019/1447
https://openquantumsafe.org/
https://github.com/open-quantum-safe/
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://www.douglas.stebila.ca/research/presentations/

KEMTLS

KEMTLS
with client

authentication

TLS 1.3 and KEMTLS size of public key objects

75

TLS 1.3 and KEMTLS crypto & handshake time

76

KEMTLS-PDK overview

77

KEMTLS-PDK

78

KEMTLS-PDK
with proactive

client
authentication

79

Communication
sizes

KEMTLS

TLS 1.3 w/cached
server certs

KEMTLS-PDK

80

Handshake times, unilateral authentication

81

Handshake times, mutual authentication

82

https://openquantumsafe.org https://github.com/open-quantum-safe

liboqs

84

•C library with common
API for post-quantum
signature schemes and
key encapsulation
mechanisms

•MIT License
•Builds on Windows,
macOS, Linux; x86_64,
ARM v8

•Version 0.7.0 released
August 2021

•Includes all Round 3
finalists and alternate
candidates
• (except GeMSS)
• Some implementations
still Round 2 versions

https://openquantumsafe.org/liboqs/

https://openquantumsafe.org/liboqs/

TLS 1.3 implementations

85

OQS-OpenSSL
1.1.1

OQS-OpenSSL 3
provider

OQS-BoringSSL

PQ key exchange in TLS 1.3 Yes Yes Yes

Hybrid key exchange in TLS 1.3 Yes Coming soon Yes

PQ certificates and signature authentication in TLS
1.3

Yes No Yes

Hybrid certificates and signature authentication in TLS
1.3

Yes No No

https://openquantumsafe.org/applications/tls/

Using draft-ietf-tls-hybrid-design for hybrid key exchange

Interoperability test server running at https://test.openquantumsafe.org

https://openquantumsafe.org/applications/tls/
https://test.openquantumsafe.org/

Applications

86

•Demonstrator
application integrations
into:
• Apache
• nginx
• haproxy
• curl
• Chromium

• In most cases required
few/no modifications to
work with updated
OpenSSL

•Runnable Docker images
available for download

https://openquantumsafe.org/applications/tls/#demo-integrations

https://openquantumsafe.org/applications/tls/

Benchmarking

87

•New benchmarking portal at
https://openquantumsafe.org/benchmarking/

•Core algorithm speed and memory usage
•TLS performance in ideal network conditions
•Intel AVX2 and ARM 64

https://openquantumsafe.org/benchmarking/

