Proving KEMTLS in Tamarin

or: | used Tamarin and you can too!

Douglas Stebila

IIIIIIIIIIII

Based on joint work with Sofia Celi, Jonathan Hoyland, Thom Wiggers

SKECH 4 « 2022-07-12

Session H4: Formal Verification

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

A Comprehensive Symbolic Analysis of TLS 1.3

Cas Cremers Marko Horvat Jonathan Hoyland
University of Oxford, UK MPI-SWS, Germany Royal Holloway, University of
London, UK
Sam Scott Thyla van der Merwe
Royal Holloway, University of Royal Holloway, University of
London, UK London, UK

ABSTRACT

The TLS protocol is intended to enable secure end-to-end commu-
nication over insecure networks, including the Internet. Unfortu-
nately, this goal has been thwarted a number of times throughout
the protocol’s tumultuous lifetime, resulting in the need for a new
version of the protocol, namely TLS 1.3. Over the past three years, in

Force (IETF) in the mid-nineties, the protocol has been incremen-
tally modified and extended. In the case of TLS 1.2 and below, these
modifications have taken place in a largely retroactive fashion;
following the announcement of an attack [6, 7, 18, 20, 32, 43, 49],
the TLS Working Group (WG) would either respond by releasing a
protocol extension (A Request for Comments (RFC) intended to pro-

an unprecedented joint design effort with the academic c Y, vide i d functionality and/or security enhancements) or by
the TLS Working Group has been working tirelessly to enhance applying the appropriate “patch” to the next version of the protocol.
the security of TLS. For amore detailed analysis of the develop and standardisation

We further this effort by constructing the most comprehensive,
faithful, and modular symbolic model of the TLS 1.3 draft 21 release
candidate, and use the TAMARIN prover to verify the claimed TLS 1.3
security requirements, as laid out in draft 21 of the specification. In
particular, our model covers all handshake modes of TLS 1.3.

Our analysis reveals an unexpected behaviour, which we expect
will inhibit strong authentication guarantees in some implementa-
tions of the protocol. In contrast to previous models, we provide
a novel way of making the relation between the TLS specification
and our model explicit: we provide a fully annotated version of
the specification that clarifies what protocol elements we modelled,
and precisely how we modelled these elements. We anticipate this
model artifact to be of great benefit to the academic community
and the TLS Working Group alike.

KEYWORDS
symbolic verification, authenticated key exchange, TLS 1.3

1 INTRODUCTION

The Transport Layer Security (TLS) protocol is the de facto means
for securing communications on the World Wide Web. Initially
released as Secure Sockets Layer (SSL) by Netscape Communica-
tions in 1995, the protocol has been subject to a number of version
upgrades over the course of its 20-year lifespan. Rebranded as TLS
when it fell under the auspices of the Internet Engineering Task

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10....$15.00
https://doi.org/10.1145/3133956.3134063

of TLS see [45].

Prior to the announcement of the BEAST [26] and CRIME [27]
attacks of 2011 and 2012, respectively, such a strategy was valid
given the frequency with which versions were updated, and the
limited number of practical attacks against the protocol.

Post-2011, however, the heightened interest in the protocol and
the resulting flood of increasingly practical attacks against it [1-
3, 5,9, 13, 15, 16, 26, 27, 29, 31, 41, 42, 44] rendered this design
philosophy inadequate. Coupled with pressure to increase the pro-
tocol’s efficiency (owing to the release of Google’s QUIC Crypto
[37]), the IETF started drafting the next version of the protocol, TLS
1.3, in the Spring of 2014. Unlike the development of TLS 1.2 and
below, the TLS WG adopted an “analysis-prior-to-deployment” de-
sign philosophy, welcoming contributions from the academic com-
munity before official release. There have been substantial efforts
from the academic community in the areas of program verification—
analysing implementations of TLS [12, 14], the development of com-
putational models— analysing TLS within Bellare-Rogaway style
frameworks [24, 25, 28, 33, 35, 38], and the use of formal methods
tools such as ProVerif[17] and Tamarin[48] to analyse symbolic
models of TLS [4, 10, 22, 30]. All of these endeavours have helped
to both find weaknesses in the protocol and confirm and guide the
design decisions of the TLS WG.

The TLS 1.3 draft specification however, has been a rapidly mov-
ing target, with large changes being effected in a fairly regular
fashion. This has often rendered much of the analysis work ‘out-
dated’ within the space of few months as large changes to the
specification effectively result in a new protocol, requiring a new
wave of analysis.

In this work we contribute to what is hopefully the last wave of
analysis of TLS 1.3 prior to its official release. We present a tool-
supported, symbolic verification of a near-final draft of TLS 1.3,
adding to the large effort by the TLS community to ensure that
TLS 1.3 is free of the many weaknesses affecting earlier versions, and
that it is imbued with security guarantees befitting such a critical
protocol. We note that most of the cryptographic mechanisms in
the current TLS 1.3 draft are stable, and other than fluctuations

J Cryptol (2021) 34:37
https://doi.org/10.1007/s00145-021-09384-1

Jourmnal of ;')
CRYPTOLOGY oo

updates

A Cryptographic Analysis of the
TLS 1.3 Handshake Protocol

Benjamin Dowling
Department of Computer Science, ETH Ziirich, Zurich, Switzerland

Marc Fischlin
TU Darmstadt, Darmstadt, Germany
marc.fischlin@cryptoplexity.de

Felix Giinther
Department of Computer Science, ETH Ziirich, Zurich, Switzerland

Douglas Stebila
University of Waterloo, Waterloo, Canada
dstebila@uwaterloo.ca

Communicated by Colin Boyd
Received 31 October 2019 / Revised 22 February 2021 / Accepted 22 February 2021

Abstract. We analyze the handshake protocol of the Transport Layer Security (TLS)
protocol, version 1.3. We address both the full TLS 1.3 handshake (the one round-
trip time mode, with signatures for authentication and (elliptic curve) Diffie-Hellman
ephemeral ((EC)DHE) key exchange), and the abbreviated resumption/“PSK” mode
which uses a pre-shared key for authentication (with optional (EC)DHE key exchange
and zero round-trip time key establishment). Our analysis in the reductionist security
framework uses a multi-stage key exchange security model, where each of the many
session keys derived in a single TLS 1.3 handshake is tagged with various properties
(such as unauthenticated versus unilaterally authenticated versus mutually authenti-
cated, whether it is intended to provide forward security, how it is used in the protocol,
and whether the key is protected against replay attacks). We show that these TLS 1.3
handshake protocol modes establish session keys with their desired security properties
under standard cryptographic assumptions.

Keywords. Authenticated key exchange, Transport Layer Security (TLS), Handshake
protocol.

1. Introduction

The Transport Layer Security (TLS) protocol is one of the most widely deployed crypto-
graphic protocols in practice, protecting numerous web and e-mail accesses every day.
The TLS handshake protocol allows a client and a server to authenticate each other
© The Author(s) 2021

Published online: 30 July 2021

How do we compare them?

* Are they about the same protocol?

* Are they about the same security properties?
* Adversary interaction
* Adversary goals

* Are they using the same assumptions?

Are they about the same protocol?

Session H4: Formal Verification €CS'17, October 30-November 3, 2017, Dallas, T, USA J Cryptol (2021) 34:37 T oumalof
https://doi.org/10.1007/s00145-021-09384-1 ’
YI I DLDEY Check for
R paien

A Comprehensive Symbolic Analysis of TLS 1.3

Cas Cremers Marko Horvat Jonathan Hoyland
University of Oxford, UK MPL-SWS, Germany Royal Holloway, University of
London, UK

Sam Scott Thyla van der Merwe

Royal Holloway, University of Royal Holloway, University of A Cryptographic Analysis of the
London, UK London, UK TLS 1.3 Handshake Prot 1
ABSTRACT Force (IETF) in the mid-nineties, the protocol has been incremen- - andshake r'rotoco
tally modified and extended. In the case of TLS 1.2 and below, these

The TLS protocol is intended to enable secure end-to-end commu- Benjamin Dowlin,
nication over insecure networks, including the Internet, Unfortu- ~ modifications have taken place in a largely retroactive fashion; Deps fC SJ: ce. ETH Zi .5h Zurich, Switzerland
nately, this goal has been thwarted a number of times throughout following the announcement of an attack [6, 7, 18, 20, 32, 43, 49), epartment of Computer Science, rich, Zurich, Switzerlan

th e T L S 1 3 I potocot s ikme seuling i h e o s the LS WorkingGroup (WG) would iher respond b resing — .
' * Closer to wire format ¢ Cryptographic core
handshake, but

_ — includes most of TLS 1.3
as interpreted fields, extensions handshake

and abstracted » Includes multiple * Multiple modes

by the authors modes in same handled separately
analysis

Are they about the same security goals?

Both cover
session key
security, but
starting from
different places

. g - J Cryptol 2021) 34:37
Session H4: Formal Verification CCS’17, October 30-November 3, 2017, Dallas, TX, USA TYp! () Journal of q

https://doi.org/10.1007/s00145-021-09384-1
CRYPTOLOGY o

A Comprehensive Symbolic Analysis of TLS 1.3

Cas Cremers Marko Horvat Jonathan Hoyland

University of Oxford, UK MPI-SWS, Germany Royal Holloway, University of
London, UK
Sam Scott Thyla van der Merwe
Royal Ho]l_lov:iay, Iglli(versity of Royal Holl‘lov;ay, L{r;]i(versity of A Cryptographlc Analys]s of the
ondon UK London,
TLS 1.3 Handshake Protocol
ABSTRACT Force (IETF) in the mid-nineties, the protocol has been incremen-
The TLS prot nded to enable secure end-to-end commu- tally modified e of TLS 1.2 and below, these Benjamin Dowling
cation o etworks, including the Internet. Unfortu- modificatio largely retroact; on; ang fc e (T Fikich Zatich, Suiizedland
ely, this n thrwarted s number of times throughout following the announcement of an attack [6, 7, 18, 20, 32, 43, 49, epartment of Computer Science, iirich, Zurich, Switzerlang
rotoc s lifetime, resulting in the need for a new the TLS Working Group (WG) would either respond by releasing a

» Covers 6/8 security * Multi-stage AKE
goals from TLS 1.3 definition

specification * Builds on long-
standing AKE models

* Session key secrecy from [BR93] onwards
with forward secrecy . Session key

* Authentication indistinguishability
« Agreement with forward secrecy

¢ « Match security

Are they using the same assumptions?

Both assume
secure building

blocks (signature,
DH, KDF, ...), but
with very different

modelling

Session H4: Formal Verification CCS’17, October 30-November 3, 2017, Dallas, TX, USA

A Comprehensive Symbolic Analysis of TLS 1.3

Cas Cremers Marko Horvat Jonathan Hoyland

University of Oxford, UK MPI-SWS, Germany Royal Holloway, University of
London, UK
Sam Scott Thyla van der Merwe
Royal Holloway, University of Royal Holloway, University of
London, UK London, UK
ABSTRACT Force (IETF) in the mid-nineties, the protocol has been incremen-
The TLS prot nded to enable secure end-to-end commu- tally modified e of TLS 1.2 and below, thes,
cation o etworks, including the Internet. Unfortu- modification: largely retroact on;
ely, this n thwarted a number of times throughout following the announcement of an attack [6, 7, 18, 20, 32, 43, 49],
rotoc s lifetirme, resulting in the need for a new the TLS Working Group (WG) would either respond by releasing a

« Symbolic model with
ideal primitives

« Reasoning based on
what can be derived
from known terms

 Does model HKDF down

to the hash function

J Cryptol (2021)34:37
hitps://doi.org/10.1007/500145-021-09384-1

Journal of q
CRYPTOLOGY o

updates

A Cryptographic Analysis of the
TLS 1.3 Handshake Protocol
Benjamin Dowling
Department of Computer Science, ETH Ziirich, Zurich, Switzerland

Licall

« Computational model

with computational
assumptions

« EUF-CMA, IND-1CCA,
collision resistance, dual
PRF, dual-shnPRF-ODH,

« Concrete non-tight

bounds

Are they comparable?

Same protocol?
ame security goals?
ame assumptions?
ame proof method?

More citations?

Session H4: Formal Verification CCS’17, October 30-November 3, 2017, Dallas, TX, USA

A Comprehensive Symbolic Analysis of TLS 1.3

Cas Cremers Marko Horvat Jonathan Hoyland
University of Oxford, UK MPI-SWS, Germany Royal Holloway, University of
London, UK
Sam Scott Thyla van der Merwe
Royal Holloway, University of Royal Holloway, University of

London, UK London, UK
ABSTRACT Force (IETF) in the mid-nineties, the protocol has been incremen-
The TLS protocol is intended to enable secure end-to-end commu- tally modified and extended. In the case of TLS 1.2 and below, these
nication over insecure networks, including the Internet. Unfortu- ~ modifications have taken place in a largely retroactive fashion;
nately, this goal has been thwarted a number of times throughout following the announcement of an attack [6, 7, 18, 20, 32, 43, 49],
the protocol’s tumultuous lifetime, resulting in the need for a new the TLS Working Group (WG) would either respond by releasing a

J Cryptol (2021) 34:37 i o
hitps://doi.org/10.1007/500145-021-09384-1 Cogpls

CRYPTOLOGRY

A Cryptographic Analysis of the
TLS 1.3 Handshake Protocol
Benjamin Dowling
Department of Computer Science, ETH Ziirich, Zurich, Switzerland

Moo Ticalli

Incomparable

Incomparable

Symbolic < Computational (concrete

Formal =2 Pen-and-paper

184

165

Are they comparable?

From a practical perspective, not necessarily bad
that they are incomparable

More perspectives and more viewpoints means
less likely flaws are overlooked

This talk

Proving KEMTLS in
paper with the same
protocol definition and
same security
properties as the pen-
and-paper proof

KEMTLS

Reimagining of TLS 1.3
handshake to use

key encapsulation
mechanisms (KEMs) for
implicit authentication,
rather than digital
signatures for explicit
authentication

* Reduce communication
sizes in PQ setting
since PQ KEMs are in
general smaller than
PQ signatures

eCar
con

SOIM

reduce
putation costs In
e configurations

KEMTLS
handshake

KEM for
ephemeral key exchange

KEM for
server-to-client
authenticated key exchange

Combine shared secrets

Client Server

static (KEMg): pkg, sks

»
>

TCP SYN

TCP SYN-ACK

-
-«

(pke, ske) «— KEMe.Keygen() 1

e

(sse, cte) «— KEMe.Encapsulate(pk,)
K1, K] < KDF(sse)
cte, AEAD, (cert[pkg])

-
-«

sse «— KEM¢.Decapsulate(cte, ske)

K1, K| < KDF(sse)

(sss, cts) < KEMs.Encapsulate(pkg)
AEADK{(Cts)

sss < KEMg.Decapsulate(cts, sks)
K2, K, K)',K,” « KDF(ss¢||sss)
AEADk, (key confirmation), AEAD K, (application data)

Y

AEAD K (key confirmation)

A

AEADg (application data)

A

11

Signed KEX
versus
KEMTLS

Labels ABCD:

A = ephemeral KEM
B = leaf certificate

C = intermediate CA
D =root CA

Algorithms: (all level 1)
Dilithium,

eCDH X25519,
Falcon,

Kyber,

NTRU,

Rainbow,

rSA-2048,

SIKE,

XMSS’

Time until client received
encrypted application data (ms)

120

100

30

60

40

20

SSXR

\ > min incl. int. CA cert.
SFXR
errr NFFF
. NNFFe® o— a
KKDD KDDDE
&
. ~ ,,/ o
RSA-2048 \ " assumption: MLWE
+ X25519 assumption: NTRU
»
&,
=
>
m signed KEX incl. int. CA cert. -
e KEMTLS incl. int. CA cert.
0 2 4 6 8 10 12

Size of public key crypto objects transmitted (KB)

Rustls client/server with some AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

12

KEMTLS variants

Traditional Pre-distributed server

communication flow: public keys:

1. KEMTLS server-only 3. KEMTLS-PDK server-only
authentication authentication

2. KEMTLS mutual 4. KEMTLS-PDK mutual

authentication authentication

https://eprint.iacr.org/2020/534
https://eprint.iacr.orqg/2021/779

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779

Proving KEMTLS

Multi-stage
authenticated key

exchange model for
KEMTLS

- Bellare-Rogaway AKE model
- Multi-stage AKE model [FG14]

- Multi-stage AKE model for TLS 1.3
[DFGS15]

[BR93] Bellare, Rogaway, Crypto’93. [FG14] Fischlin, Gunther, ACM CCS 2014.

[DFGS15] Dowling, Fischlin, Gunther, Stebila, ACM CCS 2015.

Phase 3: Confirmation /

Phase 1: ephemeral key exchange

Phase 2: Implicitly authenticated key exchange

explicit authentication

Client

TCP SYN
TCP SYN-ACK

(pke, ske) —KEM.Keygen()
ClientHello: pk,, rc «s {0, 1}%%, supported algs.
ES«—HKDF.Extract(0, 0)
dES «HKDF.Expand(ES, "derived", 0)

(sse, cte) <~ KEMe.Encapsulate(pk,)
ServerHello: cte, rs «s {0, 1}256, selected algs.

sse «— KEMe.Decapsulate(cte, ske)
HS <« HKDF.Extract(dES, ss,)

accept CHTS «—HKDF.Expand(HS, "¢ hs traffic", CH..SH)

dHS «~HKDF.Expand(HS, "derived",)

{EncryptedExtensions}age,
{ServerCertificate};qq,: cert[pkg], int. CA cert.

(sss, cts) <~ KEMs.Encapsulate(pks)
{ClientKemCiphertext}gsqge,: cts

ssg «—KEM;g.Decapsulate(ctg, sks)

AHS «~ HKDF Extract(dHS, ss<)
accept CAHTS «~HKDF.Expand(AHS, "c ahs traffic", CH..CKC)

dAHS «~HKDF.Expand(AHS, "derived", 0)

MS«HKDF.Extract(dAHS, 0)
fke «—HKDF.Expand(MS, "c finished", 0)
fks <~ HKDF.Expand(MS, "s finished", 0)

{ClientFinished}stqge,: CFe—HMAC(fkc, CH..CKC)

abort if CF # HMAC(fke, CH..CKC)
accept CATS«—HKDF.Expand(MS, "c ap traffic",CH..CF)

record layer, AEAD-encrypted with key derived from CATS

{ServerFinished}stage,: SFe—HMAC(fks, CH..CF)

abort if SF # HMAC(fks, CH..CF)

accept SATS —HKDF.Expand(MS, "s ap traffic",CH..SF)

record layer, AEAD-encrypted with key derived from SATS

stage 6

6 session

keys

15

Multi-stage AKE model

Queries

* NewSession

« Send

« CorruptLongTermKey
* RevealSessionKey

» Test

Variables

e Session 1
* T.0WNer

e 11.peerid

e 11.role
 t.stage

e r.5id[1..M]
e r.cid[1..M]

» t.key[1..M]
e 7.State

Model parameters
 r.auth[1..M]
o .fs[1..M][1..M]

» r.use[1..M]

Multi-stage AKE model

Security properties
* Match security * Multi-stage key
» 6 conditions about session indistinguishability
identifier matching « 3 levels of forward secrecy
* Authentication (malicious
acceptance)

 Offline deniability

* Per-stage properties

» Can be retroactively upgraded
by acceptance of later stages

Limitations of pen-and-paper proofs

* Mostly Wliitten out for * Proof sketches for
isnedsiglc?nngu%%ability for session-key
KEMTLS and KEMTLS- indistinguishability of
PDK server-only auth remaining variants
V.aﬂa”ts i / «Hand-waving argument

re%féﬁ)o'ﬁ;*games for offline deniability

* But only as reliable as the «\/3riants handled
authors and the readers

are iIndependently

* In the public versions. | did write them out for KEMTLS in a private version with painful LaTeX macros.

Formal verification using Tamarin

» Tamarin prover is a model checker for security protocols in
the symbolic model

* Protocol and adversary powers are specified as a set of state
machine transitions (“multiset rewriting rules”)

» Security property is specified as a predicate over actions
recorded during state machine transitions

» Tamarin prover explores (infinite) state space of all possible
executions to find an execution trace that violates the
security property or verifies that none exists (or fails to
terminate)

https://tamarin-prover.github.io/

https://tamarin-prover.github.io/

Formal verification using Tamarin

* Tamarin successfully » Tamarin model of TLS 1.3
used on many academic drafts crsverisy found several
and real-world flaws
cryptographic protocols + Espegially in interactions

» Especially effective on petween difierent protocols
key eXChange prOtOCOIS * e.g.in TLS 1.3 pre-shared key

* Note Tamarin models key resumption
exchange security based - Expensive: months of person-
on learning session key, effort, 1 week of computation
not indistinguishability time, 100 GB RAM

[CHSV] Cremers, Horvat, Scott, van der Merwe, IEEE S&P 2016.
[CHHSV] Cremers, Horvat, Hoyland, Scott, van der Merwe, ACM CCS 2017.

Modelling KEMTLS using Tamarin
Approach 1 Approach 2

https://github.com/thomwiggers/TLS13Tamarin https://github.com/dstebila/KEMTLS-Tamarin

» Adapt [CHHSV] full-scale Tamarin * Encode pen-and-paper multi-
model of TLS 1.3 to KEMTLS stage AKE definitions in Tamarin

 High resolution protocol * Lower resolution protocol
specification: captures TLS specification: “core cryptographic”
message format, internal KDF of KEMTLS
structure, ... « E.g. No TLS message structure

* Lower resolution security * Higher resolution security
properties properties

* Required more human effort to « Simpler to specify and
get proofs running automatically automatically proves

[CHHSV] Cremers, Horvat, Hoyland, Scott, van der Merwe, ACM CCS 2017.

https://github.com/thomwiggers/TLS13Tamarin
https://github.com/dstebila/KEMTLS-Tamarin

In model of

Feature Approach 1 Approach 2

Protocol modelling

Encrypted handshake messages

HKDF and HMAC decomposed into hash calls
Key exch. and auth. KEMs are the same algorithm
TLS message structure

NSNS
X X X X

Security properties

Adversary can reveal long-term keys

Adversary can reveal ephemeral keys

Adversary can reveal intermediate session keys
Secrecy of handshake and application traffic keys
Forward secrecy

Multiple flavours of forward secrecy

Explicit authentication

Deniability

XA X NSNS XSS
N SNSNSNSNSNS xS

Queries

Variables

Pen-and-paper Tamarin approach 2 Pen-and-paper Tamarin approach 2

NewSession
Send

CorruptLongTermKey
RevealSessionKey
Test

KetGenLTK

KEMTLS_SAUTH_ClientAction1
KEMTLS_SAUTH_ServerAction1
KEMTLS_SAUTH_ClientAction2

OCorruptLTK
ORevealSessionKey

No Test oracle — symbolic
model based on key
recovery

Session

T.owner
m.peerid

m.role

m.stage
m.sid[1..M]
m.cid[1..M]
m.key[1..M]
m.auth[1..M]
m.fs[1..M][1..M]
m.use[1..M]
n.state

Thread identifier tid
ProtocolMode fact
Owner fact

Peer fact

Role fact

Implicit part of state
SID facts

CID facts

SK facts

Auth facts

FS facts
Replayable facts
State fact

23

KEM_s

KEM_c
KeyGen

Protocol
state \Z
machine

PDK-MUTUAL

i PDK-SAUTH
Clientl

Clientl

SAUTH_OR
_MUTUAL
Clientl

PDK-SAUTH // PDK-MUTUAL

Serverl / Serverl
¥ /
/
SAUTH MUTUAL \ PDK-SAUTH //// PDK-MUTUAL
Client2 Client2 \ Client2Pt1 / Client2Pt1 4
KC, CCRT \ / 4
~ ! 7
~
\ ~ N /
\
SAUTH \
\ Server2Pt1 \
\ \

QF
\

\ /// PDK-MUTUAL

\ Client2Pt2// Client2Pt2

< CF / ~N
~
~
SAUTH / PDK-SAUTH PDK-MUTUAL
Server2Pt2 Server2 Server2
W SF _

-

SAUTH
Client3

Model parameters

KEMTLS KEMTLS KEMTLS-PDK KEMTLS-PDK
Parameter Server-only auth. Mutual auth. Server-only auth. Mutual auth.
auth® (6*°) same as server-only auth. (474, 00) (474, 00)
auth® (00°) (5*°, 00) (00*?) (5°)
wfsl wfsl wfsl wfsl wfsl fs \ 00 0 00
wfsl wfsl wfsl wfsl fs
wfs2 wfs2 fs fs
C wfs2 wfs2 wfs2 fs
FS same as server-only auth. wfs2 fs fs same as server-only auth.
wfs2 wfs2 fs
fs fs
wfs2 fs
fs
\ s/
L 00 0 0 0) 00 0 00
whsl whel fs fs wfsl wfsl wfsl wfsl wfsl wfsl wfsl fs
FS® FSY . = wfsl for all j > i wfsl wfsl wfsl wfsl wfsl fs
J wfsl fs fs
wfsl wfsl wfs2 fs
fs fs
\ / wfsl fs
fs
replay (nonreplayable*®) same as server-only auth. (replayable, nonreplayable**) same as server-only auth.

25

Theorems

Pen-and-paper Tamarin approach 2

Match security

Multi-stage session key indistinguishability
* Single protocol mode available

Authentication
Offline deniability

Reachable: It is possible for the adversary to cause stage i of
protocol mode j to accept with its intended security properties.

Attacker works: It is possible for the adversary to learn session
key of stage i of protocol mode j (when no freshness restrictions).

Match security properties 1, 2, 3,4, 5,6, 7

Session key unrecoverability of keys tagged nofs (client), nofs
(server), wfs1, wfs2, fs
* All protocol modes available simultaneously

Authentication

Offline deniability (transcript indistinguishability using
observational equivalence)

26

Definition B.3 (Freshness). Stage i of a
session 7 is said to be fresh in the sense
of weak forward secrecy 1 if:

(1)
(2)

(3)

the stage key was not revealed
(7.revealed; = false);

the stage key of the partner ses-
sion at stage i, if the partner ex-
ists, has not been revealed (for all
i, ' such that r.sid; = n’.sid;, we
have that 7’.revealed; = false);
there exists j > i such that
w.FSij = wfsl, m.status; =
accepted, and there exists a con-
tributive partner at stage i.

lemma sk_security_wfs1: "

All tid_owner i cid_i sid_i sk_i #taccept #tcid #tsid #tsk .
/I if stage i has accepted a session key with corresponding contributive and session identifiers
Accept(tid_owner, i) @ #taccept & SK(tid_owner, i, sk_i) @ #tsk
& CID(tid_owner, i, cid_i) @ #tcid & SID(tid_owner, i, sid_i) @ #tsid
/[and it is fresh in the sense of wfs1, namely that
Il (1) the stage key was not revealed
& not(Ex #t . RevealedSessionKey(tid_owner, i) @ #t)
Il and (2) the stage key of the partner session at stage i, if the partner exists, has not been revealed
& not(

Ex tid_partner #tt1 #tt2 . not(tid_owner = tid_partner)

& SID(tid_partner, i, sid_i) @ #tt1 & RevealedSessionKey(tid_partner, i) @ #tt2)
Il and (3) there exists j 2 i s.t. Pi.FS_{i,j} = wfs1, Pi.status_j = accepted,
/Il and there exists a contributive partner at stage i
& (

Ex j #tfs #tacceptj . FS(tid_owner, i, j, 'wfs1') @ #tfs

& Accept(tid_owner, j) @ #taccept]

& (Ex tid_peer #tacceptjpeer #tcidpeer . not(tid_owner = tid_peer)

& Accept(tid_peer, j) @ #tacceptjpeer & CID(tid_peer, i, cid_i) @ #tcidpeer))

Il then the session key cannot be learned by the adversary

==> not(Ex #t . KU(sk_i) @ #t)"

27

Tamarin runtimes for Approach 2

Lemma KEMTLS KEMTLS-PDK All 4
sauth mutual both sauth mutual both variants
reachable_x* 0:01:17 0:01:20 0:04:32 0:01:46 0:01:36 0:04:40 0:13:25
attacker_works_x* 0:00:17 0:00:46 0:01:16 0:00:17 0:00:23 0:00:53 0:12:04
match_* 0:01:02 0:01:22 0:02:55 0:00:55 0:01:14 0:02:46 0:09:53
sk_sec_nofs_client 0:00:05 0:00:07 0:00:16 0:00:05 0:00:05 0:00:14 0:00:41
sk_sec_nofs_server 0:00:05 0:00:06 0:00:12 0:00:05 0:00:06 0:00:14 0:00:40
sk_sec_wfsl 0:00:21 0:00:10 0:01:05 0:00:17 0:00:18 0:00:41 0:03:00
sk_sec_wfs2 0:00:36 0:00:28 0:01:30 0:00:28 0:00:22 0:01:23 0:24:28
sk_sec_fs 0:01:20 0:03:05 0:06:38 0:01:21 0:01:33 0:05:07 1:39:58
malicious_accept. 0:00:13 0:01:40 0:04:13 0:00:17 0:00:22 0:01:39 27:29:37
deniability (abbr.) 0:01:02 0:12:15 — 0:00:24 0:29:10 — —
Total (excl. den.) 0:05:16 0:09:05 0:22:38 0:05:30 0:06:00 0:17:38 30:13:46

Are they comparable?

KEMTLS KEMTLS Tamarin
pen-and-paper approach 2
Same protocol? Pretty close
Same security goals? Pretty close”
Same assumptions? Computational 2 Symbolic

Same proof method Pen-and-paper < Formal

Tamarin found bugs in pen-and-paper proof

KEMTLS KEMTLS KEMTLS-PDK KEMTLS-PDK
Parameter Server-only auth. Mutual auth. Server-only auth. Mutual auth.
auth® (6>9) same as server-only auth. (474, 00) (4%4 Joo)
. 5x5, X5 5x5
Can easily tweak (577, 00) (007) (57)
: e 0 0 0 0O
security definitions / BRI
|em mas tO CheCk yOU same as server-only auth. wfs2 fs fs same as server-only auth.
: : fs fs
have the prqpertles right e
/ optimal. wfsl wfsl wfsl wfsl fs fs\
wisl whsl wisl fsfs | (0 0 O 0 O 00 0 00
ety il £ £ wfsl wfsl wfsl wfsl wfsl wfsl wfsl fs
FS® FS? . = wfsl for all j >4 wfsl wfsl wfsl wfsl wfsl fs
i wfsl fs fs
fs fs wfsl wfsl wfs2 fs
\ e wfsl fs

replay (nonreplayable*®)

same as server-only auth. (replayable, nonreplayable**) same as server-only auth.

30

It’s not that scary

*|'d only done a Tamarin tutorial before this

* No intermediate lemmas
* No manual proving in Tamarin; everything proved
automatically

* About 30-40 hours of work encoding protocol and
security properties

* Can it be used by someone who wasn't a creator of
the tool?

It was fun

* Got to run some big computing jobs!

Validates that prose-based pen-and-paper models
can be rigorized

*| found it rewarding to see it come together and
validate the pen-and-paper work

Proving KEMTLS in Tamarin

| used Tamarin and you can too!

Douglas Stebila WATERLOO
KEMTLS
Implicitly authenticated TLS Can encode multi-stage AKE model in Tamarin
without handshake signatures « Same protocol, same security properties
using KEMs All four protocol variants simultaneously
' Sa\jes bytes on the wire, server Not too hard to state or prove
cycles

. Variants for client authentication and ldentified bugs in pen-and-paper proofs
pre-distributed public keys

https://kemtls.orqg/

https://eprint.iacr.orq/2020/534 < https://eprint.iacr.orq/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://github.com/thomwiggers/TLS13Tamarin ¢ https://github.com/dstebila/KEMTLS-Tamarin/

33

https://kemtls.org/
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://github.com/thomwiggers/TLS13Tamarin
https://github.com/dstebila/KEMTLS-Tamarin/

Appendix

KEMTLS

Phase 1: ephemeral key exchange

Phase 2: Implicitly authenticated key exchange

Phase 3: Confirmation /
explicit authentication

TCP SYN
TCP SYN-ACK

(pk,, ske) <~ KEM,.Keygen()
ClientHello: pk,, rc «s {0, 1}%%, supported algs.
ES«HKDF.Extract(0, 0)
dES < HKDF.Expand(ES, "derived", 0)

(sse, cte) —KEMe.Encapsulate(pk,)
ServerHello: cte, rs «s {0, 1}256, selected algs.

sse «— KEMe.Decapsulate(cte, ske)

HS «HKDF.Extract(dES, ss,)
accept CHTS «~ HKDF.Expand(HS, "c hs traffic",CH..SH)

dHS «~HKDF.Expand(HS, "derived", 0)

{EncryptedExtensions};age,
{ServerCertificate} g, cert[pkg], int. CA cert.

(sss, ctg) e~ KEM;.Encapsulate(pkg)
{ClientKemCiphertext};qge, : cts

ssg «—KEM;q.Decapsulate(ctg, skg)

AHS «HKDF.Extract(dHS, sss)
accept CAHTS «~HKDF.Expand(AHS, "c ahs traffic", CH..CKC)

dAHS «~HKDF.Expand(AHS, "derived", 0)

MS «HKDF.Extract(dAHS, 0)
fke «—~HKDF.Expand(MS, "c finished",0)
fks <~ HKDF.Expand(MS, "s finished", 0)

{ClientFinished}stqge,: CF¢—HMAC(fke, CH..CKC)

abort if CF # HMAC(fk,, CH..CKC)

accept CATS«—HKDF.Expand(MS, "c ap traffic",CH..CF)

{ServerFinished}stage,: SFe—HMAC(fks, CH..CF)

abort if SF # HMAC(fks, CH..CF)

accept SATS«—HKDF.Expand(MS, "s ap traffic",CH..SF)

KEMTLS
with client
authentication

Phase 2: Implicitly authenticated key exchange Phase 1: ephemeral key exchange

Phase 3: Confirmation / explicit authentication

Client Server

TCP SYN
TCP SYN-ACK

(pk,, ske)—KEM,.Keygen()
ClientHello: pk,, re s {0,1}?5, supported algs.
ES«HKDF.Extract(0, 0)
dES «HKDF.Expand(ES, "derived", 0)

(sse, cte) <~ KEMe.Encapsulate(pk,)

}256

ServerHello: cte, rs «s {0,1 , selected algs.

-

sse ¢~ KEM,.Decapsulate(ct,, ske)

HS «~HKDF.Extract(dES, ss¢)
accept CHTS «— HKDF.Expand(HS, "¢ hs traffic",CH..SH)

dHS «~HKDF.Expand(HS, "derived", 0)

{EncryptedExtensionS)\mmu

stage,* cert[pkg], int. CA cert.
{CertificateRequest}qge,

{ServerCertificate}

(sss, cts) <~ KEMg.Encapsulate(pkg)

{ClientKemCiphertext}g, ., : cts

ssg «—KEM;.Decapsulate(ctg, sks)

AHS «~ HKDF.Extract(dHS, sss)
accept CAHTS «~HKDF.Expand(AHS, "c ahs traffic", CH..CKC)

dAHS «—HKDF.Expand(AHS, "derived", 0)
{ClientCertificate} qg,: cert[pke], int. CA cert.

(ssc, cte) «—KEMc.Encapsulate(pk.)
{ServerKemCiphertext} qge,: ctc

ss¢ «—KEM,.Decapsulate(cte, ske)

MS «HKDF.Extract(dAHS, ss¢)
fke <~ HKDF.Expand(MS, "c finished", 0)
fks —HKDF.Expand(MS, "s finished",0)

{ClientFinished}ssqge,: CFe—HMAC(fk,, CH..SKC)
-

abort if CF # HMAC(fke, CH..SKC)

accept CATS «—HKDF.Expand(MS, "c ap traffic", CH..CF)

record layer, AEAD-encrypted with key derived from CATS

{ServerFinished}ssage,: SFe~HMAC(fks, CH..CF)

abort if SF # HMAC(fks, CH..CF)

accept SATS «—HKDF.Expand(MS, "s ap traffic",CH..SF)

.. stage 6

record layer, AEAD-encrypted with key derived from SATS

KEMTLS-PDK overview

Client Server

Knows pkg static (KEMs): pkg, sks

(pk,,ske) « KEM..Keygen()
(sss,cts) « KEM..Encapsulate(pkg)

pk., cts

sss +— KEM;.Decapsulate(ctg, sks)
(sse, cte) ¢ KEM..Encapsulate(pk,)

cte

sse « KEM..Decapsulate(ct., ske)

K,K' K" K" + KDF(ssg||sse)
AEAD k (key confirmation)

AEAD g (application data)

Client Server

static (KEM.): pk¢,skc
Knows pkg
(pk,,ske) ¢ KEM..Keygen()
(sss,cts) < KEM..Encapsulate(pkg)
KS = KDF(SSs)
pk.,cts, AEAD g (cert [pks])

static (KEMs): pkg, sks

sss + KEM;.Decapsulate(ctg, sks)

(sse, cte) ¢ KEM..Encapsulate(pk,)

(ssc,cte) < KEMc.Encapsulate(pk)
cte

AEAD gk (key confirmation)

AEAD g~ (application data)

(a) Unilaterally authenticated

sse < KEM..Decapsulate(cte, ske)
K, + KDF(sss||sse)
AEADk, (ctc)

ss¢ < KEM..Decapsulate(ctc, ske)

K>, K5, Ky, K3 + KDF(sss||ssc||ssc)
AEADk, (key confirmation)

AEAD; (application data)

AEADky (key confirmation)

AEAD K’ (application data)

(b) With proactive client authentication

37

KEMTLS-PDK

Client Server

Knows pkg static (KEMs): pkg,sks
TCP SYN

TCP SYN-ACK

(pk,, ske) <~ KEM..Keygen()
(sss, cts) <+ KEM;s.Encapsulate(pkg)
ClientHello: pk,, 7. s {0,1}*°°, ext_pdk: cts, supported algs.

sss +— KEM;.Decapsulate(cts, sks)
ES«+HKDF.Extract((, sss)
accept ETS«+HKDF.Expand(ES, "early data",CH)

.. stage 1
dES+«+HKDF.Expand(ES, "derived", ()
(sse, cte)— KEM..Encapsulate(pk,)
ServerHello: cte,r, s {0,1}2°¢, selected algs.
sse < KEM..Decapsulate(cte, ske)
HS « HKDF.Extract(dES, ss.)
..... eining b U o S e B et R OO
..... R e aws
dHS +HKDF.Expand(HS, "derived", ()
{EncryptedExtensions}, ..
MS+HKDF.Extract(dHS, 0)
fke—HKDF.Expand(MS, "c finished", ()
fks <~ HKDF.Expand(MS, "s finished",()
. {ServerFinished}stage;: SF—HMAC(fks,CH..EE)
abort if SF % HMAC(fk,, CH. EE)
..... e T D e e O . i
_record layer, AEAD-encrypted with key derived from SATS _
{ClientFinished}stage,: CF—HMAC(fk,, CH..SF)
abort if CF # HMAC(fk., CH..SF)
..... e Bl B1S LG R e Lo s L

__ record layer, AEAD-encrypted with key derived from CATS 38

KEMTLS-PDK
with proactive
client
authentication

Sorver

static (KEMc): pke,skc static (KEMs): pkg,sks
Knows pkg TCP SYN

TCP SYN-ACK

(pk., ske)+ KEM..Keygen()
(sss, cts) «— KEMs.Encapsulate(pkg)
ClientHello: pk,, . s {0,1}*°%, ext_pdk: cts, supported algs.

ssg < KEM;.Decapsulate(cts, sks)
ES<+HKDF.Extract(f, sss)
accept ETS <+ HKDF.Expand(ES, "early data",CH)

{ClientCertificate} ,, . : cert[pkc]

dES+HKDF.Expand(ES, "derived", ()
(sse, cte) «— KEM..Encapsulate(pk,)

ServerHello: cte,rs +s {0,1}°°°, selected algs.

sse <— KEM..Decapsulate(cte, ske)

HS «HKDF.Extract(dES, ss.)
accept CHTS<+-HKDF.Expand(HS, "c hs traffic",CH..SH)

dHS <+~ HKDF.Expand(HS, "derived", ()

{EncryptedExtensions} , ..

(ssc, ctc) «— KEMc.Encapsulate(pk,)
ServerKemCiphertext _: cte
p stages

ss¢ < KEM..Decapsulate(ctc, sk¢)

MS <+~ HKDF.Extract(dHS, ssc)
fke.+~HKDF.Expand(MS, "c finished",()
fks <~ HKDF.Expand(MS, "s finished",()

{ServerFinished}iqge,: SF<—HMAC(fks, CH..EE)

abort if SF # HMAC(fks, CH..EE)
accept SATS<+HKDF.Expand(MS, "s ap traffic",CH..SF)

{ClientFinished}stage,: CF—HMAC(fk., CH..SKC)

,,,,,,,,,,,,,,,,,,,,,,,,,,,

abort if CF # HMAC(fk., CH..SF)
accept CATS«+HKDF.Expand(MS, "c ap traffic",CH..CF)

record layer, AEAD-encrypted with key derived from CATS

39

Security subtleties: forward secrecy

Does compromise of a
party’'s long-term key
allow decryption of past
sessions”?

» Weak forward secrecy 1:
adversary passive in the test
stage

* Weak forward secrecy 2:
adversary passive in the test
stage or never corrupted
peer’s long-term key

* Forward secrecy: adversary
passive in the test stage or
didn’t corrupt peer’s long-term
key before acceptance

40

Lessons learned from formal verification

* Higher assurance in protocol « Formal verification identified bugs
design in previous work:

- Captures potential interactions * Approach 1 identified minor bugs in
between all 4 protocol variants E’é’ﬂ'ﬂ%'vT]LS 1.3 Tamarin model of

 Exhibits difficulty trade-off in

formal verification: « Approach 2 identified minor bugs in

security properties stated in original

granularity of protocol KEMTLS and KEMTLS-PDK papers
specification » E.g. Wrong retroactive

Versus . authentication stages or
granularity of security incorrect forward secrecy levels

properties for some stages

