Post-Quantum Cryptography

Douglas Stebila

WATERLOO

Quantum Days • 2023-01-18

Why post-quantum?

Combinatorics and Optimization researchers use computational complexity to further understand the quantum partition function

Researchers collaborate with IBM researchers and publish new research from their work with the Institute for Quantum Computing

Mathematics home

About Mathematics

Community engagement and outreach	>
Teaching	>
Research	,

A powerhouse of discovery and innovation

As North America's only dedicated Faculty of Math, we are nationally and internationally recognized as one of the top schools for Mathematics and Computer Science.

scover new ways to harness the power of mathematics, computer science, and statistics.

With nearly \$30 million in research funding (2019/20) and an alumni network of over 42,000 across more than 100 countries, our students, faculty, and graduates continue to push the boundaries of research

https://uwaterloo.ca/math/news/combinatorics-and-optimization-researchers-use-computational

3

DO ADMISSIONS ABOUT WATERLOO FACULTIES & ACADEMICS OFFICES & SERVICES SUPPORT WATERLOO COVID-19

MATHEMATICS

Combinatorics and Optimization researchers use computational complexity to further understand the quantum partition function

Researchers collaborate with IBM researchers and publish new research from their work with the Institute for Quantum Computing

Mathematics home

About Mathematics

Community engagement and outreach	î¤^
Teaching	ĵa^
Research	ĵa^

A powerhouse of discovery and innovation

As North America's only dedicated Faculty of Math, we are nationally and internationally recognized as one of the top schools for Mathematics and Computer Science.

With nearly \$30 million in research funding (2019/20) and an alumni network of over 42,000 across more than 100 countries, our students, faculty, and graduates continue to push the boundaries of research

 $\hat{1}$

SEARCH

Cryptographic building blocks

Connection - secure connection settings

The connection to this site is encrypted and authenticated using TLS 1.2, ECDHE_RSA with X25519 and AES_128_GCM.

Post-quantum cryptography

a.k.a. quantum-resistant algorithms

Cryptography based on computational assumptions believed to be resistant to attacks by quantum computers

Uses only classical (non-quantum) operations to implement

Quantum key distribution

Also provides quantumresistant confidentiality

Uses quantum mechanics to protect information

Doesn't require a full quantum computer

=> Not the subject of this talk

Post-quantum

Security depends on computational assumptions	Can be information-theoretically secure
Works on existing infrastructure	Requires new devices and communication channels
No limitations on communication distance	Limits on communication distance without new technology (repeaters) or additional trusts assumptions

Post-quantum		Traditional public key crypto	
Computational assumptions studied since		Computational assumptions studied since	
1970s	1990s/2000s/2010s	1970s / 1980s	
Conjecturally resistant to quantum attacks		Vulnerable to quantum attacks	
Medium to large communication sizes (700–30000+ bytes)		Small communication sizes (32–384 bytes)	
Sub-millise	cond computation times	Sub-millisecond computation times	
Less flexible for building fancy cryptography		Flexible for building fancy crypto	

Trade-offs with post-quantum crypto

Long standing confidence in quantum-resistance

Fast computation

Small communication

Families of post-quantum cryptography

Hash- & symmetric-based

- Can only be used to make signatures, not public key encryption
- Very high confidence in hashbased signatures, but large signatures required for many signature-systems

Code-based

- Long-studied cryptosystems with moderately high confidence for some code families
- Challenges in communication sizes

Multivariate quadratic

- Variety of systems with various levels of confidence and trade-offs
- Substantial break of Rainbow algorithm in Round 3

Lattice-based

- High level of academic interest in this field, flexible constructions
- Can achieve reasonable communication sizes

Elliptic curve isogenies

- Newest mathematical construction
- Small communication, slower computation
- Substantial break of SIKE in Round 4

Primary goals for post-quantum crypto

Confidentiality in the public key setting

Public key encryption schemes

- Alternatively: key encapsulation mechanisms
 - KEMs are a generalization of two-party Diffie–Hellman-style key exchange
 - Easy to convert KEM into PKE and vice versa

Authentication & integrity in the public key setting

Digital signature schemes

Standardization of PQ cryptography

The path to standardization

Principles	LegislationRegulators
Policies	 Standards organizations: ISO, Industry bodies: PCI-DSS, ANSI, NIST,
Protocols	 Technology standards organizations IETF, ANSI,
Mathematics	 Specialist organizations NIST, CFRG

Standardizing post-quantum cryptography

"IAD will initiate a transition to quantum resistant algorithms in the not too distant future."

– NSA Information Assurance Directorate, Aug. 2015

Post-Quantum Cryptography Standardization

Post-quantum candidate algorithm nominations are due November 30, 2017. Call for Proposals

Call for Proposals Announcement

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Currently, public-key cryptographic algorithms are specified in FIPS 186-4, *Digital Signature Standard*, as well as special publications SP 800-56A Revision 2, *Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography* and SP 800-56B Revision 1, *Recommendation for Pair-Wise Key-Establishment Schemes Using Integer*

NIST Post-quantum Crypto Project timeline

NIST Round 3 selections and Round 4

Selections

Key encapsulation mechanisms

Lattice-based: Kyber

Signatures

- Lattice-based: Dilithium, Falcon
- Hash-based: SPHINCS+

Round 4

Key encapsulation mechanisms

• Code-based: BIKE, Classic McEliece, HQC

Isogeny-based: SIKE

Signatures

• There will be an "on-ramp" for new signature schemes

Will we be ready in time?

[Mosca] IEEE Security & Privacy 16(5):38–41, Sep/Oct 2018. <u>https://doi.org/10.1109/MSP.2018.3761723</u> [Quantum threat] <u>https://evolutiong.com/quantum-threat-timeline-2021.html</u>

Timeline to replace cryptographic algorithms

Paths to standardization and adoption

Making TLS post-quantum

Transport Layer Security (TLS) protocol

- Most important cryptographic protocol on the Internet
- •The "S" in HTTPS

- Originally SSL (Secure Sockets Layer) by Netscape in 1995
- Standardized by IETF as TLS 1.0 in 1999; current version is TLS 1.3 (2018)
- Required by default for all web browsers since ~2021

SSL/TLS Protocol

Connection - secure connection settings

Abou

Com outr

Teac

Research

î¤^

The connection to this site is encrypted and authenticated using TLS 1.2, ECDHE_RSA with X25519 and AES_128_GCM.

With nearly \$30 million in research funding (2019/20) and an alumni network of over 42,000 across more than 100 countries, our students, faculty, and graduates continue to push the boundaries of research

Signed Diffie–Hellman, server-only authentication

Pre-shared key with ephemeral Diffie–Hellman (PSK-ECDHE)

Three dimensions of "post-quantum TLS"

#1: Security goals • Confidentiality • Authentication

#3: Impact

- Protocol
 - changes
- Compatibility
- Performance

#2: Algorithms

• PQ-only

• Hybrid

What is "post-quantum TLS"?

Pre-shared key	Post-quantum	Classical+PQ	Post-quantum	Classical+PQ	Alternative
(PSK) mode	key exchange	key exchange	signatures	signatures	protocol designs
 Already supported! Still has the key distribution problem No PQ forward secrecy 	 Easiest to implement Easy backwards compatibility Needed soonest: harvest now & decrypt later with quantum computer 	 "Hybrid" Easy to implement Possibly in demand during pre-FIPS- certification period 			

Cautious "hybrid" approach

Hybrid approach: use traditional and postquantum simultaneously such that successful attack needs to break both

Why use two (or more) algorithms?

1. Reduce risk from break of one algorithm

2. Ease transition with improved backwards compatibility

3. Standards compliance during transition

What is "post-quantum TLS"?

Pre-shared key (PSK) mode	Post-quantum key exchange	Classical+PQ key exchange	Post-quantum signatures	Classical+PQ signatures	Alternative protocol designs
 Already supported! Still has the key distribution problem No PQ forward secrecy 	 Easiest to implement Easy backwards compatibility Needed soones : harvest now & decrypt later wit quantum computer 	 "Hybrid" Easy to implement Possibly in demand during pre-FIPS- certification period 	On the web: requires coordination with certificate authorities Less urgently needed: can't retroactively break channel authentication	 "Hybrid" or "Composite" May not make sense in the context of a negotiated protocol like TLS 	 Harder to implement; may require state machine or architecture changes Lots of interesting research to do!

Hybrid key exchange in TLS 1.3

- General structures for hybrid post-quantum + classical key exchange in TLS 1.3
- No algorithm specifications included – to be defined elsewhere via NIST and CFRG
- Standardization paused until algorithms ready
- Preliminary implementations available

Preliminary PQ TLS experiments

https://openquantumsafe.org/ • https://blog.cloudflare.com/experiment-with-pg/

Progress on other Internet protocols

Secure Shell (SSH)

- Internet-Draft on hybrid key exchange
- Hybrid key exchange by default in OpenSSH since April 2022
- Open Quantum Safe experiments

X.509 certificates

- Internet-Drafts for composite keys and signatures in X.509 certificates
- Open Quantum Safe experiments

- **PGP** (Pretty Good Privacy email encryption/authentication)
 - Internet-Draft
- **IPsec** (virtual private network)
 - Internet-Draft on hybrid key exchange
- Wireguard (virtual private network)
 - Research paper

https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/ • https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-keys-03 https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-07 • https://datatracker.ietf.org/doc/draft-wussler-openpgp-pqc/ https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-multiple-ke • https://eprint.iacr.org/2020/379

Open Quantum Safe Project

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

Post-Quantum Cryptography

Douglas Stebila

Public key cryptography designed to resist attacks by quantum computers

- Five families of mathematical assumptions
- Standardization of core algorithms under way by US National Institute of Standards and Technology
- Starting the process of standardizing post-quantum cryptography in Internet protocols

Up next:

• Atefeh Mashatan:

WATERLOO

- Strategic and operational implications for enterprises transitioning to postquantum cryptography
- Quantum readiness roadmaps and timelines
- David Jao:
 - Post-quantum hard problems and cryptographic schemes
 - Technical challenges with postquantum cryptography