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1. Background

Why post-quantum?
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Security overview

a ®© A

@ Overview

Main origin (secure)

B https://puremath.club This pgfe is secure (valid HTTPS).

Secure origins = ertificate - valid and trusted

B https://polyfill.io The connection to this site is using a valid, trusted server
certificate issued by R3.

Unknown / canceled View certificate

@ https://fonts.googleap

@ https://cdnjs.cloudflare Connection - secure connection settings

@ https://fonts.gstatic.cc The connection to this site is encrypted and authenticated using

TLS 1.3, X25519, and AES_256_GCM.

esources - all served securely

esources on this page are served securely.
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Common Name puremath.club

¥ Pure Math Club

curity overview

® A

Issuer Name

Country us
Organization Let's Encrypt
R3

his page is secure (valid HTTPS).

Common Name

Certificate - valid and trusted

The connection to this site is using a valid, trusted server

Validity
certificate issued by R3.

Not Before Tue, 07 Feb 2023 23:46:41 GMT

Not After Mon, 08 May 2023 23:46:40 GMT View certificate

Connection - secure connection settings

Subject Alt Names . o . .
The connection to this site is encrypted and authenticated using

DNS Name  puremath.club TLS 1.3, X25519, and AES_256_GCM.

Resources - all served securely
ey Info

All resources on this page are served securely.
Algorithm RSA
Key Size 2048

Exponent 65537
F6:83:C7:BF:B1:3F:E6:8D:21:95:C5:0E:2F:3C:24:38:CA:35:66:38:E9:CE:2C:
5F:E4:A1:79:4E:0F:81:FA:9D:AA:65:A5:D2:1D:2B:3E:7D:BA:A4:84:89:1B:8C:F
7:26:B8:D1:38:6B:3E:5B:F1:2A:DE:F5:A4:EF:EE:F6:59:50:6F:0E:F1:79:0B:44:
93:74:19:C2:AB:37:30:34:9F:F9:7C:FD:EB:4C:A3:D8:58:0B:3A:41:C1:55:6D:
5A:4D:7E:82:EE:67:39:C7:42:E8:60:4E:1E:60:73:10:16:B6:FA:EF:F8:2A:D3:0
6:20:EA:2B:70:1E:71:A5:3B:01:0C:43:8B:24:0C:83:BE:C1:33:46:DC:A3:29:C
1:88:98:5E:8E:FD:EE:DA:A2:CF:FB:A1:65:CC:AB:93:26:4B:36:A1:EC:EQ:F9:E
F:84:E3:FD:AF:33:FE:5F:90:95:51:D4:40:7A:29:EA:92:54:70:80:D0:DC:FD:5
9:02:4C:B6:79:BB:36:F5:B7:16:6E:92:52:BA:8D:4E:8B:AE:49:C7:32:8B:70:C
3:AF:E6:17:34:DA:C1:23:F3:6D:CB:3D:C8:FF:5A:90:F2:7D:5C:0C:1E:53:CF:
A:42:93:F0:D8:6E:74:BF:E4:C9:B2:E4:00:9E:32:C3:C1:B4:15:E2:6C:D4:Q
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Certificate - valid and trusted

The connection to this site is using a valid, trusted server
certificate issued by DigiCert TLS SHA256 2020 CA1.

Connection - secure connection settings

The connection to this site is encrypted and authenticated
using TLS 1 .3,|X2551 9| and|AES_1 28_GCM.|

Public-key Symmetric
cryptography cryptography
| | | |
| | |
Elliptic curve AES AES GCM
PUIE el encryption integrit
key exchange yp grity

RSA signatures




RSA digital signatures

Key generation Signing

 Pick large random To sign message m using
primes p, g ~ 21044 secret key n, d:

« Compute  Signature:
n =pq, o = H(m)? modn
¢(n) =(@—-1(@q-1)

* Pick e € Z,,

« Compute

d = e ! mod ¢p(n)

« Public key: n, e Hard to forge signatures

if factoring is hard*

« Secret key: n, d

Verification

Get a trusted copy of the
signer’s public key n, e

To verify message m
against signature o and
public key n, e

e Check if
0 = H(m) modn



Diffie-Hellman key exchange

Public parameters: g is a generator of an abelian group of prime order q

Alice Bob

X Eg Lq Y €Er Zq

X — o send X — Y «— ¢Y
«—sendY

= QXY
Hard to compute shared 9
secret if discrete

logarithms are hard*



Institute for

Quantum
Computing

Theorem (Shor, 1984).
There exists a polynomial-
time quantum algorithm that
can factor and compute
discrete logarithms.
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Certificate - valid and trusted

The connection to this site is using a valid, trusted server
certificate issued by DigiCert TLS SHA256 2020 CA1.

Connection - secure connection settings

The connection to this site is encrypted and authenticated
using TLS 1 .3,|X2551 9| and|AES_1 28_GCM.|

Public-key o .' @ » Symmetric
cryptography by s cryptography
' | |

Based on

difficulty of o
factoring large Elliptic curve

numbers — RSA signatures Diffie—Hellman

|
AES GCM
integrity

encryption

not quantum key exchange
resistant!

11



Post-quantum cryptography
a.k.a. quantum-resistant algorithms
Cryptography based on computational

assumptions believed to be resistant to attacks
by quantum computers

Uses only classical (hon-quantum) operations to
Implement



2. Learning with errors problems



Solving systems of linear equations

secret
7xX4 4x1 7Tx1
Z13 Z13 Zl3

l x I =

Linear system problem: given blue, find red

14



Solving systems of linear equations

secret
7xX4 4x1 7Tx1
Z13 Z13 Z13

Linear system problem: given blue, find red

15



Learning with errors problem

[Regev 2005]
random secret small noise
74 4x1 7x1 7x1
Z13 Z13 Z13 Z13

0
-1
X + =
1
1
1
0
-1

16



Learning with errors problem

[Regev 2005]
random secret small noise
74 4x1 7x1 7x1
Z13 Z13 Z13 Z13

l x I + =

Search LWE problem: given blue, find red

17



Decision learning with errors problem

random secret small noise looks random
7xX4 4x1 Tx1 7Tx1
Zl3 Z13 Z13 Z13

4
7
X + =
2
11
S
12
8

Decision LWE problem: given blue, distinguish green from random

19



Search-decision equivalence

*Easy fact: If the search LWE problem is easy,
then the decision LWE problem is easy.

*Fact: If the decision LWE problem is easy, then
the search LWE problem is easy.
* Requires nq calls to decision oracle

* Intuition: test each value for the first component of the
secret, then move on to the next one, and so on.

[Regev STOC 2005]



Choice of error distribution

* Usually a discrete Gaussian distribution of width a < 1
for error rate s = aq

* Define the Gaussian function
ps(x) = exp(—||x||*/s*)

* The continuous Gaussian distribution has probability
density function

f(x) = ps(x)/ . ps(z)dz = ps(x)/s"



Short secrets

* [he secret distribution X s was originally taken to
be the uniform distribution

Short secrets: use s = Xe

* There's a tight reduction showing that LWE with
short secrets is hard if LWE with uniform secrets is
hard.

[Applebaum et al., CRYPTO 2009]



Toy example versus real-world example

640X 8
Z215

640 x 8 x 15 bits = 9.4 KiB



Ring learning with errors problem

[Lyubashevsky, Peikert, Regev 2010]

random
7xX4
Z13

Each row is the cyclic
shift of the row above

24



Ring learning with errors problem

[Lyubashevsky, Peikert, Regev 2010]

random
7xX4
Z13

Each row is the cyclic
shift of the row above

with a special wrapping rule:
x wraps to —x mod 13.




Ring learning with errors problem

[Lyubashevsky, Peikert, Regev 2010]

random
7xX4
Z13

_ Each row is the cyclic

shift of the row above

with a special wrapping rule:
X wraps to —x mod 13.

So | only need to tell you the first row.

26



Ring learning with errors problem

[Lyubashevsky, Peikert, Regev 2010]
Zys[z]/(z* + 1)

random

secret

+ 0-1x+ 12+ 1X3 small noise

27



Ring learning with errors problem

[Lyubashevsky, Peikert, Regev 2010]
Zys[z]/(z* + 1)

random

secret

small noise

X

Search ring-LWE problem: given blue, find red

28



Learning with rounding problem

random secret
x4 4x1 7x1
ZlS Zl3 ZlB
4
7

2 | Divide Z, into

11| p equal intervals

5 and map x to the
index of its interval

12
8

Search LWR problem: given blue, find red

[Banerjee, Peikert, Rosen EUROCRYPT 2012]



Problems

Learning with errors

Module-LWE Search With uniform secrets
Ring-LWE
Learning with rounding Decision With short secrets

NTRU problem



J. Public key encryption
from learning with errors



Public Key Encryption: Overview

* Alice creates a private key / public key pair

* Anyone can encrypt messages for Alice based on
her public key, but only Alice can decrypt those
messages

* Goal: Provide confidentiality



Public Key Encryption: Algorithms

Generates a
private key sk and
a public key pk.

Encrypt a message
=pleialel{{ el &Nah N m using public key
pk to obtain
ciphertext c.

Decrypt a
Decrypt(sk; C) Koy R AtEille
private key sk to
obtain message m.

33



Public key encryption from LWE
Key generation

Secret key

Public key

[Lindner, Peikert. CT-RSA 2011]



Public key encryption from LWE
Encryption

e

Ciphertext

Receiver's public key
> L
+ =
ﬂ\/ﬂ ?

Shared secret mask

[Lindner, Peikert. CT-RSA 2011]



Public key encryption from LWE

Decryption T

Ciphertext

_ ~gmwundlm
n\/n"z

Almost the same shared secret mask
as the sender used

Secret key

[Lindner, Peikert. CT-RSA 2011]



Approximately equal shared secret

The sender uses The receiver uses
A=s'(As+e)+e" =(s'A+e)s
=s'As+(s'e+e") =s'As +(e's)
=S 'As =S AS

=> Can decrypt as long as noise terms are small with high probability

37



Security of public key encryption

Theorem:

If the decision learning with errors problem is hard,
then this public key encryption scheme is
semantically secure against chosen plaintext
attacks.

*|s the decision learning with errors problem hard?

Lindner, Peikert; CT-RSA 2011



4. Difficulty of LWE
Lattice problems



Hardness of decision LWE — "lattice-based”

worst-case gap shortest

vector problem (GapSVP)

poly-time [Regev05, BLPRS13]

average-case
decision LWE

40



Lattices

Let B = {b1,b,} C Z;*" be a set of linearly independent basis vectors for Z.
Define the corresponding lattice

awy )

L=LB)=> zb;:z €L,

\ 1=1 y

(In other words, a lattice is a set of integer linear combinations.)

Define the minimum distance of a lattice as

AM(L)= min |v] .
veL\{0}



Lattices

Diagram from http://www.cs.bris.ac.uk/pgrad/csjhvdp/files/bkz.pdf

Discrete additive
subgroup of 7™

Equivalently,
integer linear
combinations
of a basis

42



Lattices

Diagram from http://www.cs.bris.ac.uk/pgrad/csjhvdp/files/bkz.pdf

There are many
bases for the
same lattice —
some short and
orthogonalish,
some long and
acute.

43



Equivalence of bases

Two n x n matrices B and B’ generate the same lattice £ if and only if B and
B’ are related by a unimodular matrix, i.e. B’ = BU where U is a n x n matrix
with integer entries and determinant 4-1.



Shortest vector problem

Diagram from http://www.cs.bris.ac.uk/pgrad/csjhvdp/files/bkz.pdf

Given some
basis for the
lattice, find
the shortest
non-zero
lattice point.



Shortest vector problems

Shortest vector problem (SVP): Given a basis B for £, find a vector
v € L such that ||¥|| = A\ (L).

Approximate shortest vector problem (SVP,): Fix v > 1. Given a
basis B for L, find a non-zero vector v € L such that ||U]|| < v - A1 (L).

Decision approximate shortest vector problem (GapSVP,): Fix
v > 1 and r > 0. Given a basis B for £ where either \{(£) < r or
A (L) >~ - r, determine which is the case. Sometimes this is stated with
r=1.

Shortest independent vector problem (SIVP,): Fix v > 1. Given a
basis B for a lattice £, find a linearly independent set {#1,...,%,} such
that max; ||U;|| < v - A (L£).



Relations among lattice problems

[LLLS]

CVP, HSVP, USVP, BDD /,
7, [Lo] VT (LM]
[GMSS] lﬁ [LM]
SVP, GapSVP,
, IMG
v, IMG] /i, [MG] %, [MR1]
2, [M N
/,,% *, IMR1] N /’———%}
SBPY <\_’_’_’/ SIVP}/ > SISn_(/,m_v R — LWEII.(].IN.(X
Vvn/2, IMG]| \ *, [MV
-
*, [R1]

Laarhoven, van de Pol, and de Weger, Cryptology ePrint Archive 2012/533

Almost all problems reduce to
SVP,. For example, SIVP, re-
duces to SVP,: any method that
solves all instances of SVP, can
be used to solve instances of
SIVP,,, up to a loss of the factor
of v/n in the subscript.

47



Regev's reduction: LWE to shortest vector

Theorem. [Reg05] For any modulus ¢ < 2P°Y(") and any discretized Gaussian
error distribution y of parameter ag > 24/n where 0 < a < 1, solving the
decision LWE problem for (n,q,U,x) with at most m = poly(n) samples is
at least as hard as quantumly solving GapSVP_ and SIVP, on arbitrary n-

dimensional lattices for some v = O(n/cq).

The polynomial-time reduction is extremely non-tight: approximately O(n!3).

[Regev; STOC 2005]



Finding short vectors in lattices

LLL basis reduction algorithm Block Korkine Zolotarev (BKZ) algorithm
* Finds a basis close to * Trade-off between
Gram-Schmidt runtime and basis
» Polynomial runtime (in quality
dimension), but basis * In practice the best
quality (shortness / algorithm for
orthogonality) is poor cryptographically

relevant scenarios



Solving the (approximate) shortest vector problem

The complexity of GapSVP. depends heavily on how v and n relate, and get
harder for smaller ~.

Algorithm Time Approx. factor ~y
LLL algorithm poly(n) 9f2(nloglogn/logn)
various 2f2(nlogn) poly(n)
various 2£2(n) time and space poly(n)
Sch87 25tn/k) 2k
NP N co-NP > \/n
NP-hard n°W)

In cryptography, we tend to use v ~ n.



b. Standardization of PQ cryptography



Standardizing post-quantum cryptography

INFORMATION
ASSURANCE
DIRECTORATE

Commercial National Security Algorithm Suite

and Quantum Computing FAQ

MFQ U/00/815099-15
January 2016

Aug. 2015 (Jan. 2016)

“IAD will initiate a
transition to quantum
resistant algorithms in
the not too distant
future.”

— NSA Information
Assurance Directorate,
Aug. 2015

= CSRC MENU

Q

COMPUTER SECURITY
RESOURCE CENTER

CSrC

Post-Quantum Cryptography

Post-Quantum Cryptography Standardization

Post-quantum candidate algorithm nominations are due November 30, 2017.
Call for Proposals

Call for Proposals Announcement

public-key cryptographic algorithms. Currently, public-key cryptographic algorithms are specified in

IPS 186-4, Digital Signature Standard, as well as special publications SP 8 6A Rev n2

52



Primary goals for post-quantum crypto

Confidentiality in the public Authentication & integrity in

key setting the public key setting
* Public key encryption * Digital signature schemes
schemes

 Alternatively: key encapsulation mechanisms

« KEMSs are a generalization of two-party
Diffie—Hellman-style key exchange

« Easy to convert KEM into PKE and vice
versa



Families of post-quantum cryptography

Code-based Multivariate quadratic

Hash- & symmetric-based

» Long-studied cryptosystems with  Variety of systems with various
moderately high confidence for levels of confidence and trade-offs

« Can only be used to make

signatures, not public key
encryption some code families - Substantial break of Rainbow

 Very high confidence in hash- » Challenges in communication algorithm in Round 3
based signatures, but large sizes
signatures required for many,
signature-systems

Lattice-based Elliptic curve isogenies

 High level of academic interest in * Newest mathematical construction
this field, flexible constructions « Small communication, slower
« Can achieve reasonable computation

communication sizes « Substantial break of SIKE in
Round 4

54



NIST Post-quantum Crypto Project timeline

Call for PQ
proposals

Submission
deadline

| |
Dec. 2016 Nov. 2017

Round 1:

69 schemes
1/3 signatures
2/3 PKE

% x6

http://www.nist.qgov/pgcrypto

Round 2
deadline

Mar. 2019

Round 2:
26 schemes
9 signatures
17 PKE

2 x6

Round 3 Round 3
deadline selection

| |
Oct. 2020 Jul. 2022
Round 3: Selection:
Finalists: . 3 Signatures

* 3 signatures . 1PKE
« 4 PKE

Alternates:
+ 3 signatures x 1
« 5PKE

N

& x4

Draft Final
standards standard
| |

2022-2023 20247

Round 4

deadline

|

Oct. 2022

Round 4: E/@

« 4 3PKEs *+

Additional signatures
deadline

Jun. 2023

55


http://www.nist.gov/pqcrypto

NIST Round 3 selections and Round 4

Selections Round 4
Key encapsulation Key encapsulation
mechanisms mechanisms

. ice- - 3 » Code-based: BIKE,
Lattice-based: Kyber® Classic McEliece, HQC

»|segeny-based-SIKE
 Lattice-based: Dilithium,

Signatures
-alcon » Call for additional signat
+Hash-based: SPHINCS+ " Sahemeg  ona SHNAUTE

Signatures



Paths to standardization and adoption

NIST NIST round 3 NIST draft FIPS
selection standard standard
A _
)
CFRG o F
CFRG standard 23
ne
. Sm
TLS working TLS PQ PR > =,
group standard D pid (%
m @
— ()
LAMPS X.509 X.509 PQ o §
working group standard ©«

Early Preliminary Standard FIPS-certified
Implementers : ) :
prototypes adoption adoption adoption
Certificate CA/B Forum
authorities guidelines

Deployment

58



Will we be ready in time?

ler Quantum threat
Selection _Final Survey S0%
20247 2027 2032 2036
|
Harvest and decrypt: e,

record encrypted communication

_ Mosca — 1/2 chance
now, decrypt it once you have a of breaking RSA-2048

quantum computer

[Mosca] IEEE Security & Privacy 16(5):38-41, Sep/Oct 2018. https://doi.org/10.1109/MSP.2018.3761723
[Quantum threat] https://evolutiong.com/quantum-threat-timeline-2021.html

59


https://doi.org/10.1109/MSP.2018.3761723
https://evolutionq.com/quantum-threat-timeline-2021.html

Timeline to replace cryptographic algorithms

ler First full
collision
SHA-1 SHA-1 for SHA-1
standardized weakened
NISI- NISI' Quantum threat
0,
SHA-2 PQ Final Sﬁli\:i{]:gd/o
standardized standard
1995 2001 2005 Jan. Aug. 20247 2027 2032 2036
2017 2017
Mosca — 1/7 chance
. of breaking RSA-2048
Browsers stop accepting
O/ Q SHA-1 certificates
Mosca — 1/2 chance
\ / of breaking RSA-2048

4
16 years

60



Trade-offs with post-quantum crypto

Confidence in quantum-resistance

Fast computation Small communication



Trade-offs with post-quantum crypto

RSA and elliptic
curves

Confidence in
quantum-
resistance

Fast /\ Small

computation communication

TLS handshake:
1.3 KB

Lattice-based
cryptography

Confidence in
quantum-
resistance

Fast Small
computation communication

TLS handshake:
11.2 KB

Hash-based
signatures

Confidence in
quantum-
resistance

Fast Small
computation communication

TLS handshake:
24 .6 KB

62



Addressing the challenges of using PQ crypto

Lack of
confidence in
security

Slow

computation Make better PQ crypto

Large

communication



Addressing the challenges of using PQ crypto

Lack of
confidence in
security

"Hybrid": Use multiple
algorithms

Actually not too bad; research
on algorithmic optimizations;
general CPU improvements

Slow
computation

Change how security and
network protocols use PQ

crypto

Large

communication

64



Hybrid approach: use traditional and
post-quantum simultaneously such that
successful attack needs to break both

- post- L
traditional quantum S o




Wrapping up



Post-quantum crypto at University of Waterloo

Main research areas:
» Design of post-quantum cryptosystems

» Cryptanalysis of post-quantum problems on
classical or quantum computers

 Efficient implementations of post-quantum
cryptography

« Adapting network protocols to post-quantum
algorithms

Main mathematical problems:

* |sogeny-based
* Lattice-based (learning with errors, NTRU)

Involved in several NIST candidates:

 Winner:

« CRYSTALS-Kyber (module learning with
errors)

* Round 3 alternates:
* FrodoKEM (learning with errors)
 NTRU (also lattice based)
+ SIKE (isogenies on elliptic curves)

Lead the Open Quantum Safe open-
source software project



g
SOJT 0
quapEILTES

o4

q

https://openquantumsafe.org/ ¢ https://github.com/open-quantum-safe/


https://openquantumsafe.org/
https://github.com/open-quantum-safe/

Open Quantum Safe Project -

Waterloo
Apache nginx curl, Open Chromium
httpd links VPN Industry partners:
« Amazon Web

Use in applications

. Services
. . anguage ° i
Integration into forks OpenSSL : SDKs . eC\I/ZTStionQ
of widelv used open- S/MIME, TLS 1.3, X.509 BoringSSL C#, C++, Go,
J > OpenSSL 3 provider Java, Python, « |IBM Research

source projects Rust «  Microsoft Research

Additional contributors:
 Senetas

« PQClean project

* Individuals

C language library,

common API

+ x86/x64 (Linux,
Mac, Windows)

ARM (Android, Financial support:
Linux) key exchange / KEMs signatures T OAWS

e Canadian Centre

for Cyber Security
latt )
: : . attice- multi-variate ash-base .« NLNet
ISogenies code-based based polynomial [ symmetric JEEENTE=Ye
Unitary Fund

https://openquantumsafe.org/ ¢ https://qgithub.com/open-quantum-safe/ * Verisign



https://openquantumsafe.org/
https://github.com/open-quantum-safe/

Where to learn more

NIST Post-Quantum
Crypto Standardiation

https://nist.gov/pgcrypto

Quantum threat timeline
https://globalriskinstitute.org/publication

s/quantum-threat-timeline/

Open Quantum Safe

project
https://openquantumsafe.org
https://github.com/open-quantum-safe/

Background on post-quantum
crypto

Post-Quantum Cryptography, by Bernstein,
Buchmann, Dahmen (2009)
https://link.springer.com/book/10.1007/978-3-
540-88702-7

EU Overview Report (Feb 20212)
https://www.enisa.europa.eu/publications/post
-quantum-cryptography-current-state-and-
quantum-mitigation

Lattice-based crypto

Mathematics of Public Key Cryptography, by
Steven Galbraith (2012)
https://www.math.auckland.ac.nz/~sqal018/cr
ypto-book/crypto-book.html

» A Decade of Lattice Cryptography, by Chris
Peikert (2017)
https://web.eecs.umich.edu/~cpeikert/pubs/lat
tice-survey.pdf

On the concrete hardness of learning with
errors, by Albrecht, Player, Scott (2015)
https://eprint.iacr.org/2015/046

CO 485 Mathematics of
Public Key Cryptography

* Includes lattice-based
cryptography and isogeny-based
cryptography

CO 487 Applied
Cryptography

* Includes lattice-based
cryptography and cryptographic
protocols

Slides at https://www.douglas.stebila.ca/research/presentations/
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https://nist.gov/pqcrypto
https://globalriskinstitute.org/publications/quantum-threat-timeline/
https://globalriskinstitute.org/publications/quantum-threat-timeline/
https://openquantumsafe.org/
https://github.com/open-quantum-safe/
https://link.springer.com/book/10.1007/978-3-540-88702-7
https://link.springer.com/book/10.1007/978-3-540-88702-7
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
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https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf
https://eprint.iacr.org/2015/046
https://www.douglas.stebila.ca/research/presentations/
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Module learning with errors problem

random secret small noise
- | I | |

every matrix entry is a polynomial in Z,|z|/(z"™ + 1)

Search Module-LWE problem: given blue, find red

[Langlois & Stehlé, https://eprint.iacr.org/2012/090, DCC 2015] 72



https://eprint.iacr.org/2012/090

Figure from https://eprint.iacr

Ring-LWE versus Module-LWE

Ring-LWE

.0org/2012/090.pdf

m blocks

Module-LWE
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https://eprint.iacr.org/2012/090.pdf

Learning with Rounding

Learning with Errors

* Noise comes from adding an
explicit (Gaussian) error term

(a,s) + e

https://eprint.iacr.org/2013/098, https://eprint.iacr.org/2015/769.pdf

Learning with Rounding

* Noise comes from rounding to a
smaller interval

[(a,8) ],

« Shown to be as hard as LWE when
modulus/error ratio satisfies certain
bounds
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NTRU problem

For an invertible s € Ry and a distribution x on R, define the NTRU distri-
bution N, , to be the distribution that outputs e/s € R, where e < .

Definition [NTRU decision problem|. Given independent samples a; € R,
where every sample is distributed according to either:

1. N, for some randomly chosen s € R, (fixed for all samples), or
2. the uniform distribution on R,

distinguish which is the case.

This is a “noisy quotient” problem.
[Hoffstein, Pipher, Silverman ANTS 1998]



Learning with Errors

* Noisy product
(a,s) + ¢

[Hoffstein, Pipher, Silverman ANTS 1998]

NTRU

NTRU

* Noisy quotient
e/s

 Actually predates LWE
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Hermite normal form

Definition. An m x n matrix A is in Hermite normal form if (informally)
it is lower triangular and its largest entry in each row is on the diagonal.

Fact. The HNF H of an integer matrix A is unique, and there is an n X n
unimodular matrix U such that H = AU.



Closest vector problem

Diagram from http://www.cs.bris.ac.uk/pgrad/csjhvdp/files/bkz.pdf

Given some
basis for the
lattice and a
target point in
the space,

find the closest
lattice point.



Closest vector problems

¢ Closest vector problem (CVP): Given a basis B for £ and a vector
w € Q™, find a vector ¥ € L such that ||w — ¥|| is minimal.

e Bounded distance decoding problem (BDD,): Fix 0 < o < 1/v/2.
(Given a basis B for a lattice £ and a vector w € Q™ such that there is a

lattice point ¥ with || — ¥|| < aX1 (L), find .
(This is a CVP instance that is especially close to a lattice point.)



Strategies for solving LWE

SIS strategy BDD strategy Direct strategy

*See Albrecht, Player, Scott for a good survey

Albrecht, Player, Scott. Journal of Mathematical Cryptology 2015. Cryptology ePrint archive 2015/046. 80



Short integer solution strategy [APS $4.1}

Solve decision LWE by finding a short vector ¢ such that (¥, a) = 0.

e Blum, Kalai, Wasserman algorithm [APS §5.2]: combinatorial method

e Lattice reduction [APS §5.3]: Use lattice reduction to find short vectors
in the scaled dual lattice (LLL, BKZ)

If we want to solve search LWE, use the search-decision equivalence in combi-
nation with solving decision LWE.

Albrecht, Player, Scott. Journal of Mathematical Cryptology 2015. Cryptology ePrint archive 2015/046.



Bounded distance decoding strategy [APS $4.2]

Solve search LWE by finding a short e such that (@, ¥) = b—e for some unknown
T

e Babai’s nearest plane algorithm
e Lindner—Peikert nearest planes, BDD by enumeration |[APS §5.4]

e Reducing BDD to unique SVP [APS §5.5]: use Kannan’s embedding of
the LWE lattice into a higher dimensional lattice with an appropriate
structure, then solve uSVP e.g. using lattice reduction

Albrecht, Player, Scott. Journal of Mathematical Cryptology 2015. Cryptology ePrint archive 2015/046.



Direct strategy [APS $4.3]

Solve search LWE by finding an 5" such that (a, s") is close to b.

e Exhaustive search [APS §5.1|: Exhaustive search for each component of §
based on the error distribution.

e Arora—Ge [APS §5.6]: solve a system of noiseless non-linear polynomials
with s as the root

Albrecht, Player, Scott. Journal of Mathematical Cryptology 2015. Cryptology ePrint archive 2015/046.



Picking concrete parameters

« Competing requirements:
« Want small dimension (to reduce communication)
* Want large dimension (to make problem harder)
* Want small noise (to reduce probability of error)
« Want large noise (to make problem harder)

« Want small modulus (to make problem harder and save
communication)

» Want large modulus (to reduce probability of error)
* Picking concrete parameters is tricky
* Lots to consider and state of art is advancing
» Costing quantum attacks is subtle
* See NTRU and Kyber NIST submissions for worked examples

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
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