# A brief introduction to lattice-based cryptography

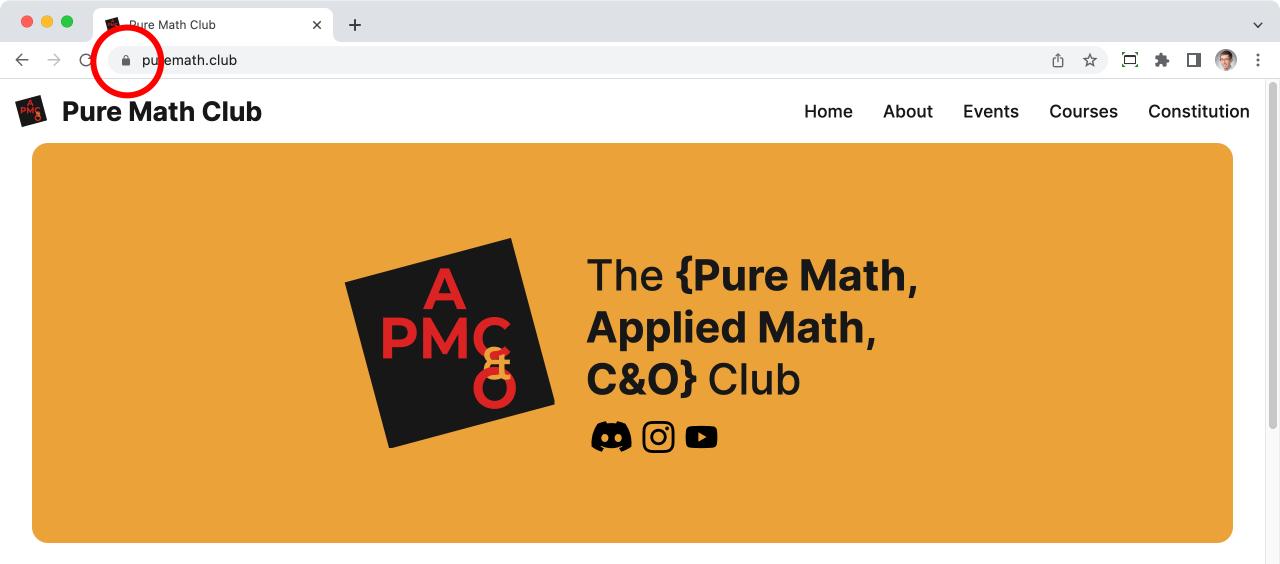
**Douglas Stebila** 



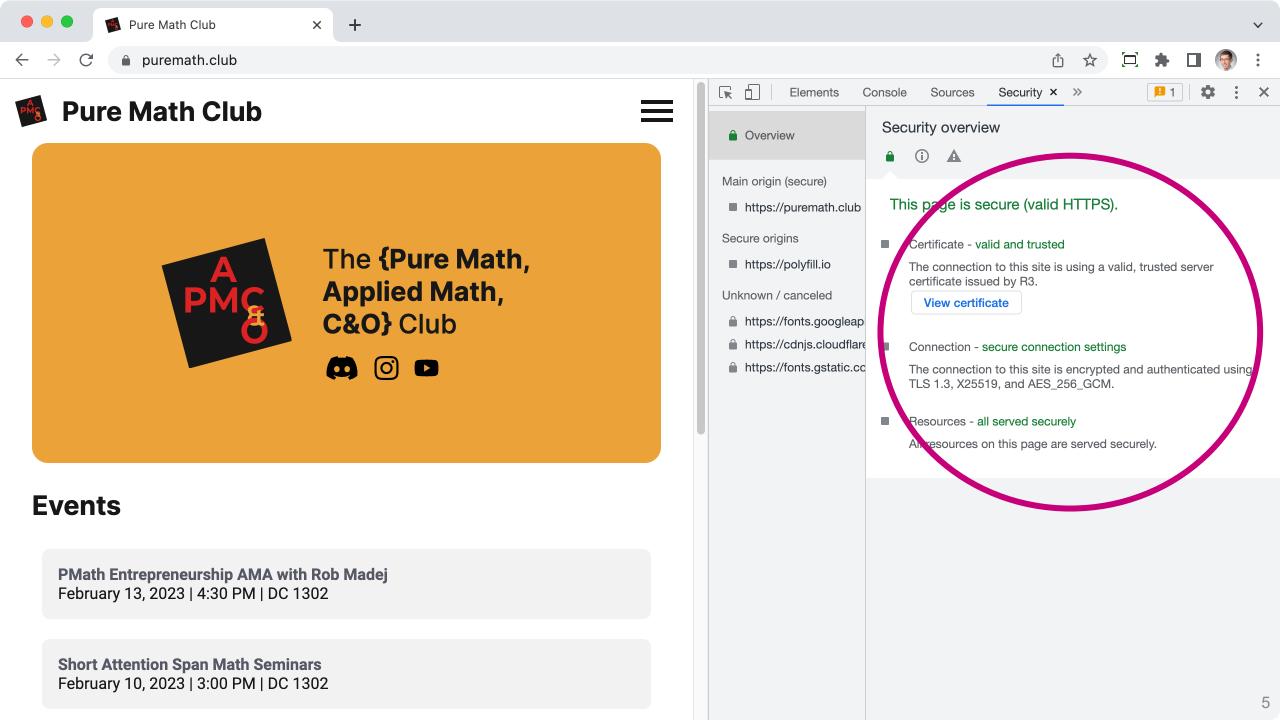
#### **Outline**

- 1. Background: Why post-quantum?
- 2. Learning with errors problems
- 3. Public key encryption from LWE
- 4. Difficulty of LWE and lattice problems
- 5. Standardization of post-quantum cryptography

# 1. Background Why post-quantum?



#### **Events**





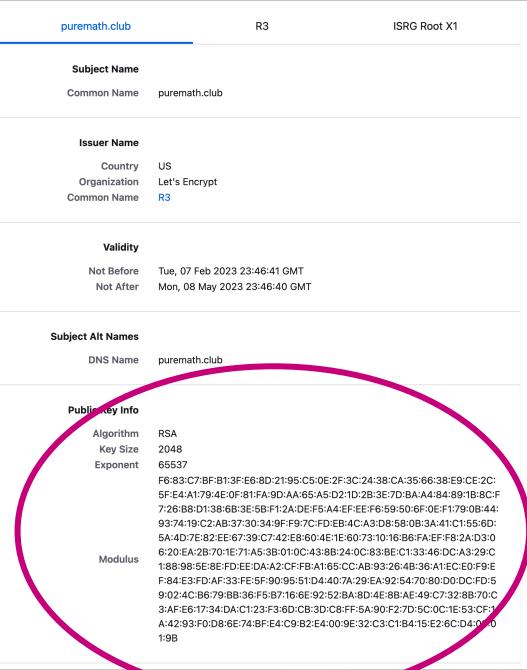




#### **Events**

PMath Entrepreneurship AMA with Rob N February 13, 2023 | 4:30 PM | DC 1302

Short Attention Span Math Seminars February 10, 2023 | 3:00 PM | DC 1302





#### This page is secure (valid HTTPS).

#### Certificate - valid and trusted

The connection to this site is using a valid, trusted server certificate issued by R3.

View certificate

#### Connection - secure connection settings

The connection to this site is encrypted and authenticated using TLS 1.3, X25519, and AES\_256\_GCM.

#### Resources - all served securely

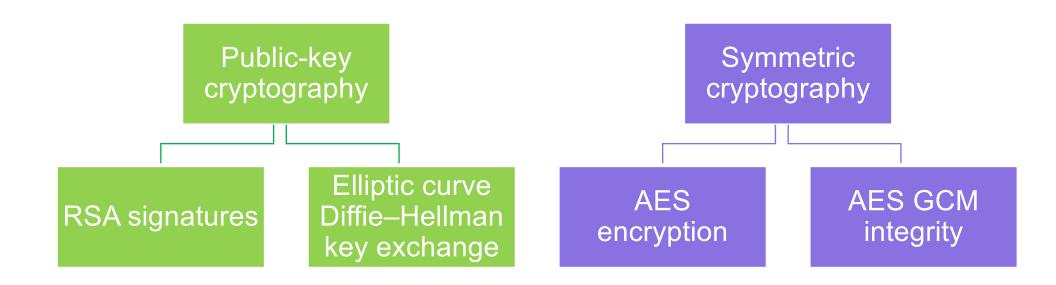
All resources on this page are served securely.

#### Certificate - valid and trusted

The connection to this site is using a valid, trusted server certificate issued by DigiCert TLS RSA SHA256 2020 CA1.

#### Connection - secure connection settings

The connection to this site is encrypted and authenticated using TLS 1.3, X25519 and AES\_128\_GCM.



## RSA digital signatures

#### **Key generation**

- Pick large random primes  $p, q \approx 2^{1024}$
- Compute n = pq,

$$\phi(n) = (p-1)(q-1)$$

- Pick  $e \in \mathbb{Z}_n^*$
- Compute  $d = e^{-1} \mod \phi(n)$
- Public key: n, e
- Secret key: n, d

#### **Signing**

To sign message m using secret key n, d:

• Signature:  $\sigma = H(m)^d \mod n$ 

Hard to forge signatures if factoring is hard\*

#### **Verification**

Get a trusted copy of the signer's public key n, e

To verify message m against signature  $\sigma$  and public key n, e

• Check if  $\sigma^e = H(m) \mod n$ 

## Diffie-Hellman key exchange

Public parameters: g is a generator of an abelian group of prime order q

#### **Alice**

$$\mathbf{x} \in_{R} \mathbb{Z}_{q}$$

$$X \leftarrow g^{x}$$

$$k \leftarrow Y^x = g^{xy}$$

Bob

send 
$$X \rightarrow$$

$$\leftarrow$$
 send Y

Hard to compute shared secret if discrete logarithms are hard\*

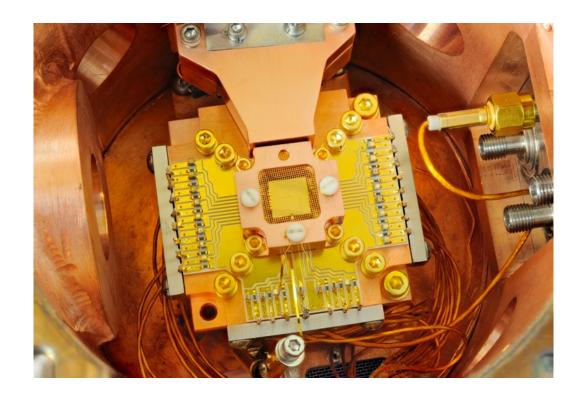
$$y \in_R \mathbb{Z}_q$$

$$Y \leftarrow g^y$$

$$k \leftarrow X^y = g^{xy}$$

# Institute for Quantum Computing





Theorem (Shor, 1984): There exists a polynomialtime quantum algorithm that can factor and compute discrete logarithms.

#### Certificate - valid and trusted

not quantum resistant!

The connection to this site is using a valid, trusted server certificate issued by DigiCert TLS RSA SHA256 2020 CA1.

#### Connection - secure connection settings

The connection to this site is encrypted and authenticated using TLS 1.3, X25519 and AES\_128\_GCM.

Based on difficulty of computing discrete not quantum resistant! Public-key Symmetric cryptography cryptography Based on difficulty of Elliptic curve AES **AES GCM** factoring large RSA signatures Diffie-Hellman numbers encryption integrity

key exchange

11

## Post-quantum cryptography

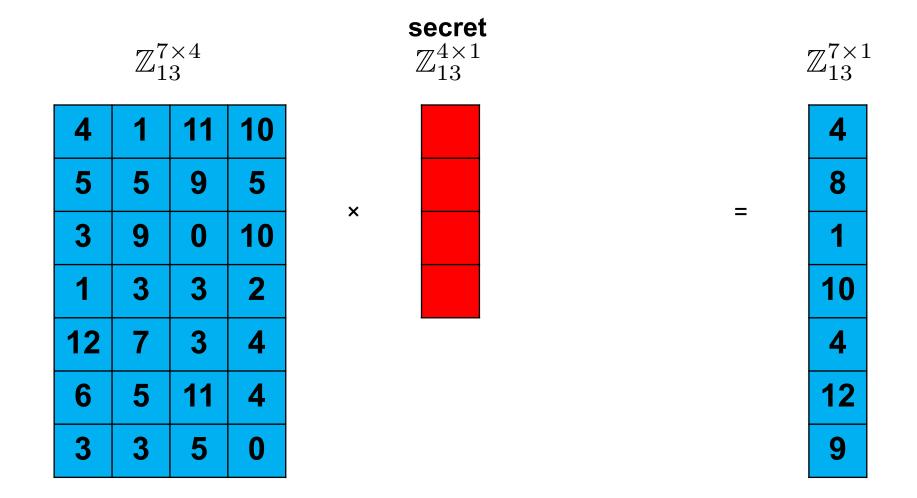
a.k.a. quantum-resistant algorithms

Cryptography based on computational assumptions believed to be resistant to attacks by quantum computers

Uses only classical (non-quantum) operations to implement

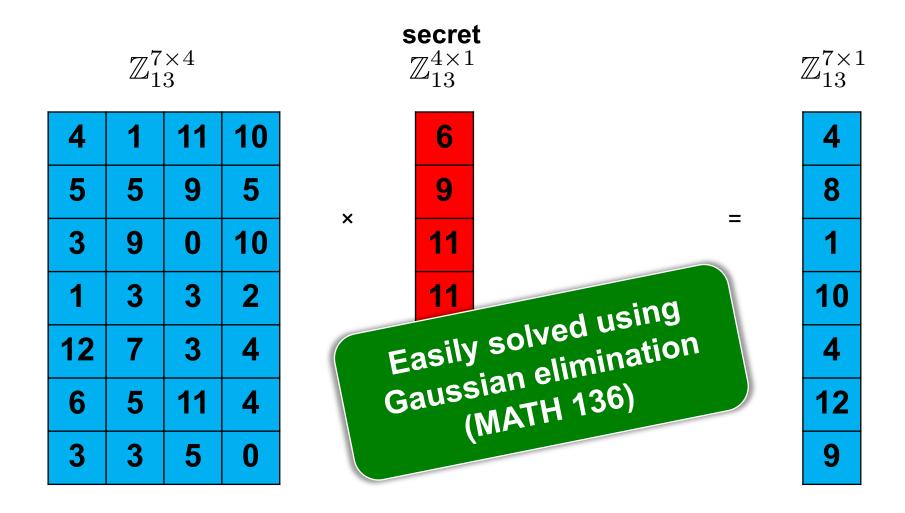
## 2. Learning with errors problems

## Solving systems of linear equations



Linear system problem: given blue, find red

## Solving systems of linear equations



Linear system problem: given blue, find red

### Learning with errors problem

[Regev 2005]

#### random

$$\mathbb{Z}_{13}^{7\times 4}$$

| 4  | 1 | 11 | 10 |
|----|---|----|----|
| 5  | 5 | 9  | 5  |
| 3  | 9 | 0  | 10 |
| 1  | 3 | 3  | 2  |
| 12 | 7 | 3  | 4  |
| 6  | 5 | 11 | 4  |
| 3  | 3 | 5  | 0  |

#### secret

$$\mathbb{Z}_{13}^{4 imes 1}$$

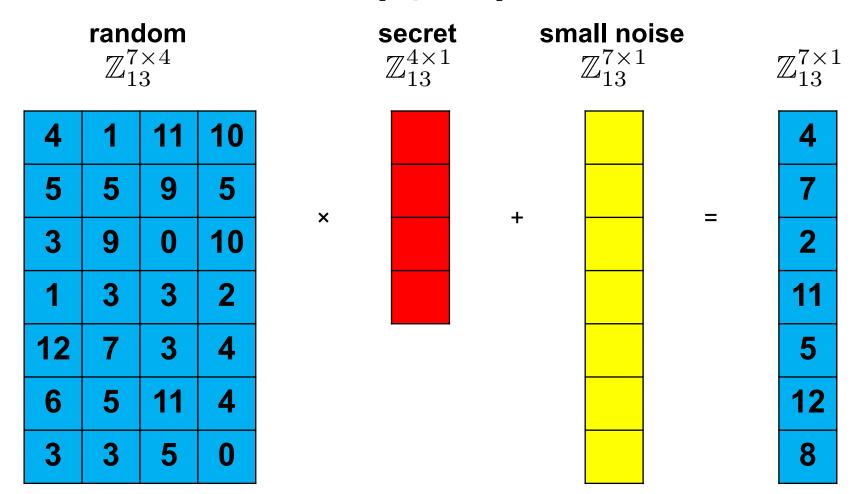
X

$$\mathbb{Z}_{13}^{7 \times 1}$$

$$\mathbb{Z}_{13}^{7 \times 1}$$

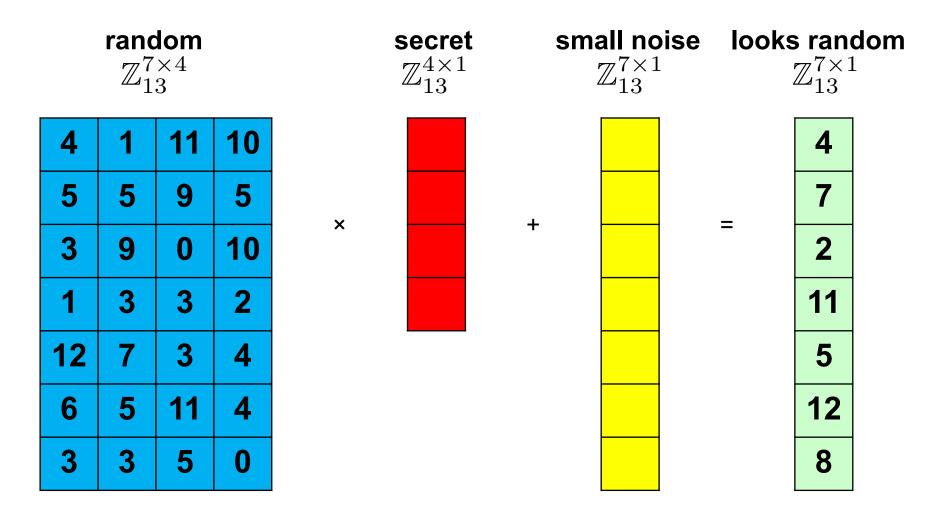
#### Learning with errors problem

[Regev 2005]



Search LWE problem: given blue, find red

## Decision learning with errors problem



**Decision LWE problem:** given blue, distinguish green from random

## Search-decision equivalence

• Easy fact: If the search LWE problem is easy, then the decision LWE problem is easy.

- Fact: If the decision LWE problem is easy, then the search LWE problem is easy.
  - ullet Requires nq calls to decision oracle
  - Intuition: test each value for the first component of the secret, then move on to the next one, and so on.

[Regev STOC 2005]

#### Choice of error distribution

- Usually a discrete Gaussian distribution of width  $\alpha < 1$  for error rate  $s = \alpha q$
- Define the Gaussian function

$$\rho_s(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|^2 / s^2)$$

The continuous Gaussian distribution has probability density function

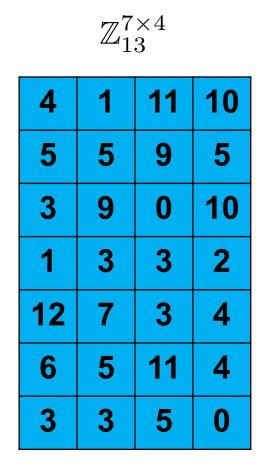
$$f(\mathbf{x}) = \rho_s(\mathbf{x}) / \int_{\mathbb{R}^n} \rho_s(\mathbf{z}) d\mathbf{z} = \rho_s(\mathbf{x}) / s^n$$

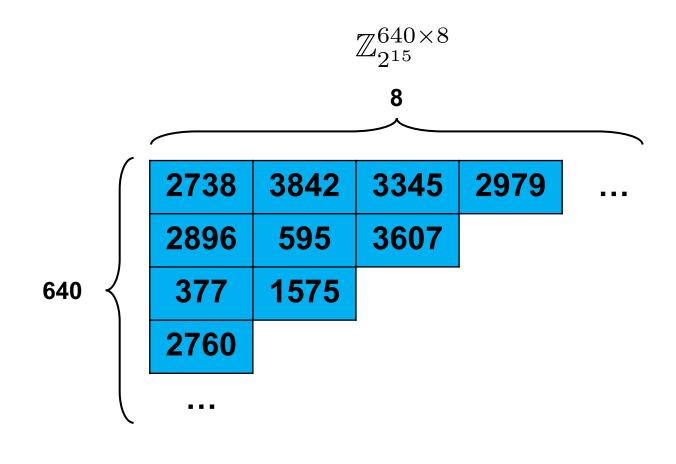
#### **Short secrets**

• The secret distribution  $\chi_s$  was originally taken to be the uniform distribution

- •Short secrets: use  $\chi_s = \chi_e$
- There's a tight reduction showing that LWE with short secrets is hard if LWE with uniform secrets is hard.

## Toy example versus real-world example





 $640 \times 8 \times 15 \text{ bits} = 9.4 \text{ KiB}$ 

[Lyubashevsky, Peikert, Regev 2010]

#### random

$$\mathbb{Z}_{13}^{7\times4}$$

| 4  | 1  | 11 | 10 |
|----|----|----|----|
| 10 | 4  | 1  | 11 |
| 11 | 10 | 4  | 1  |
| 1  | 11 | 10 | 4  |
| 4  | 1  | 11 | 10 |
| 10 | 4  | 1  | 11 |
| 11 | 10 | 4  | 1  |

Each row is the cyclic shift of the row above

[Lyubashevsky, Peikert, Regev 2010]

#### random

$$\mathbb{Z}_{13}^{7\times4}$$

| 4  | 1  | 11 | 10 |
|----|----|----|----|
| 3  | 4  | 1  | 11 |
| 2  | 3  | 4  | 1  |
| 12 | 2  | 3  | 4  |
| 9  | 12 | 2  | 3  |
| 10 | 9  | 12 | 2  |
| 11 | 10 | 9  | 12 |

Each row is the cyclic shift of the row above

. . .

with a special wrapping rule: *x* wraps to –*x* mod 13.

[Lyubashevsky, Peikert, Regev 2010]

#### random

$$\mathbb{Z}_{13}^{7\times4}$$



Each row is the cyclic shift of the row above

. . .

with a special wrapping rule: *x* wraps to –*x* mod 13.

So I only need to tell you the first row.

[Lyubashevsky, Peikert, Regev 2010]

$$\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$$

$$4 + 1x + 11x^2 + 10x^3$$

random

$$6 + 9x + 11x^2 + 11x^3$$

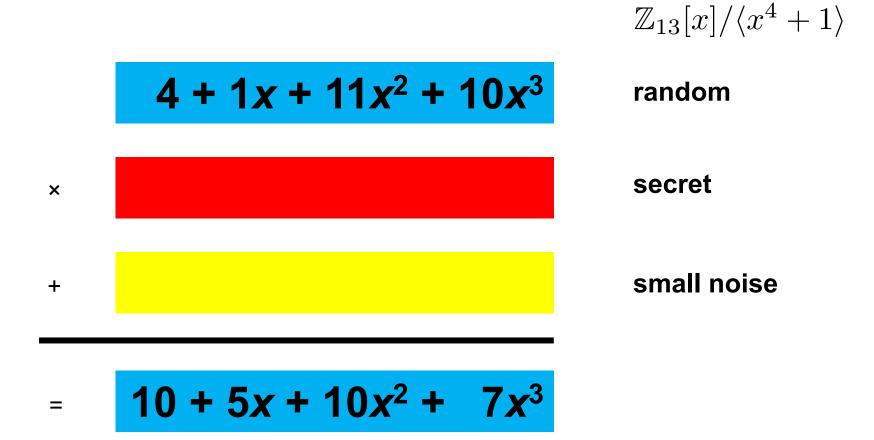
secret

$$+ 0 - 1x + 1x^2 + 1x^3$$

small noise

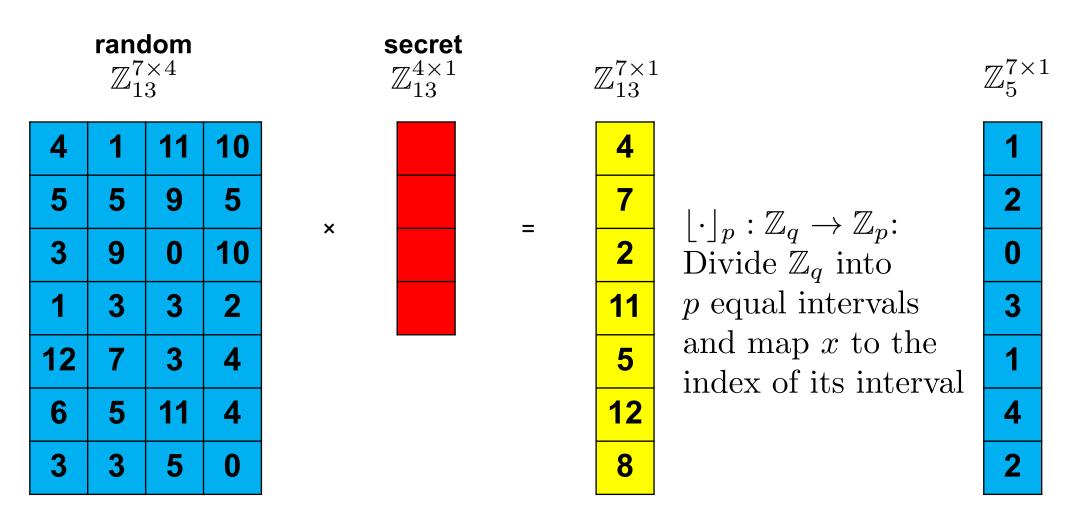
$$10 + 5x + 10x^2 + 7x^3$$

[Lyubashevsky, Peikert, Regev 2010]



Search ring-LWE problem: given blue, find red

## Learning with rounding problem



Search LWR problem: given blue, find red

## **Problems**

| Learning with errors   |          |                      |
|------------------------|----------|----------------------|
| Module-LWE             | Search   | With uniform secrets |
| Ring-LWE               |          |                      |
| Learning with rounding | Decision | With short secrets   |
| NTRU problem           |          |                      |

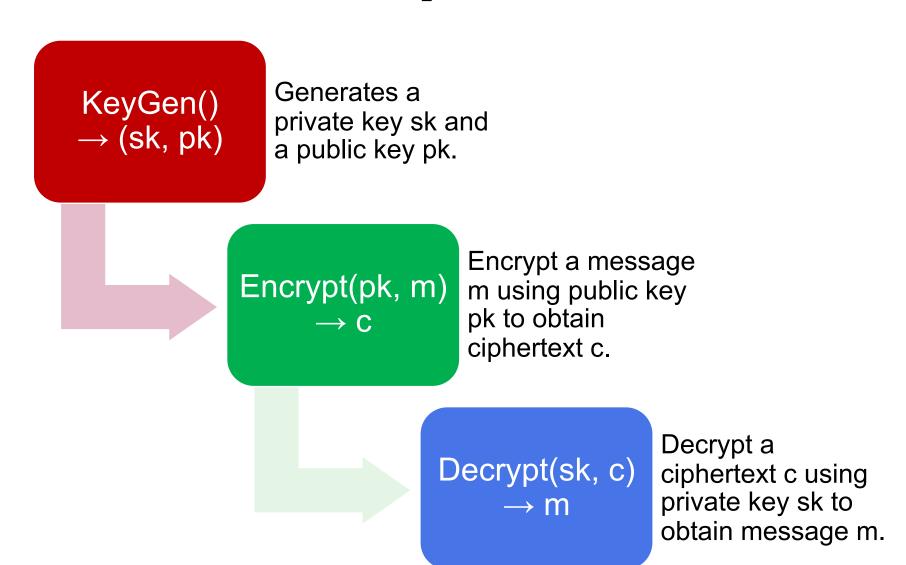
# 3. Public key encryption from learning with errors

## Public Key Encryption: Overview

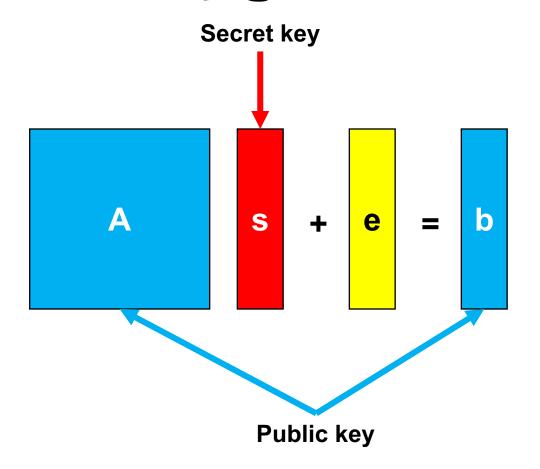
- Alice creates a private key / public key pair
- Anyone can encrypt messages for Alice based on her public key, but only Alice can decrypt those messages

Goal: Provide confidentiality

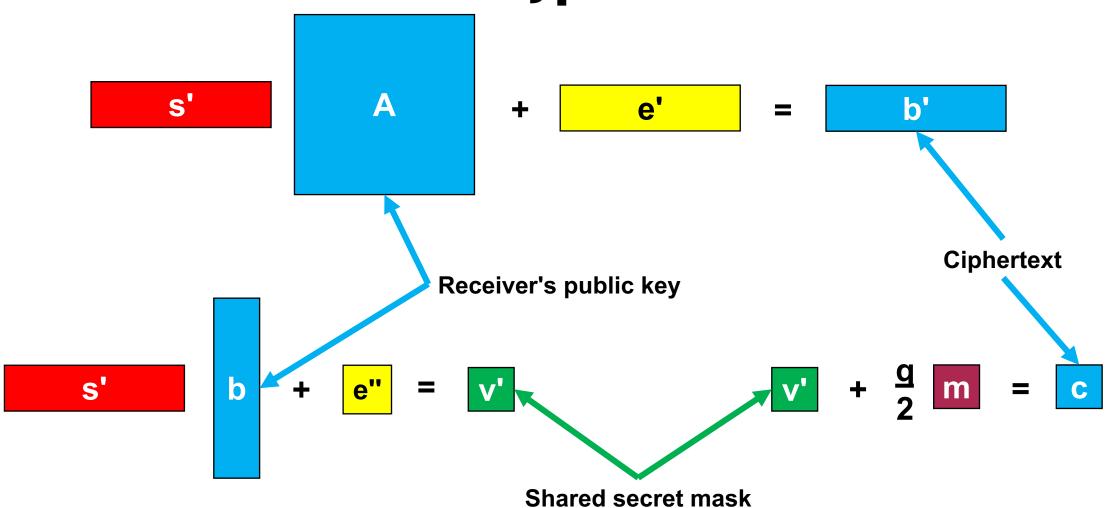
## Public Key Encryption: Algorithms



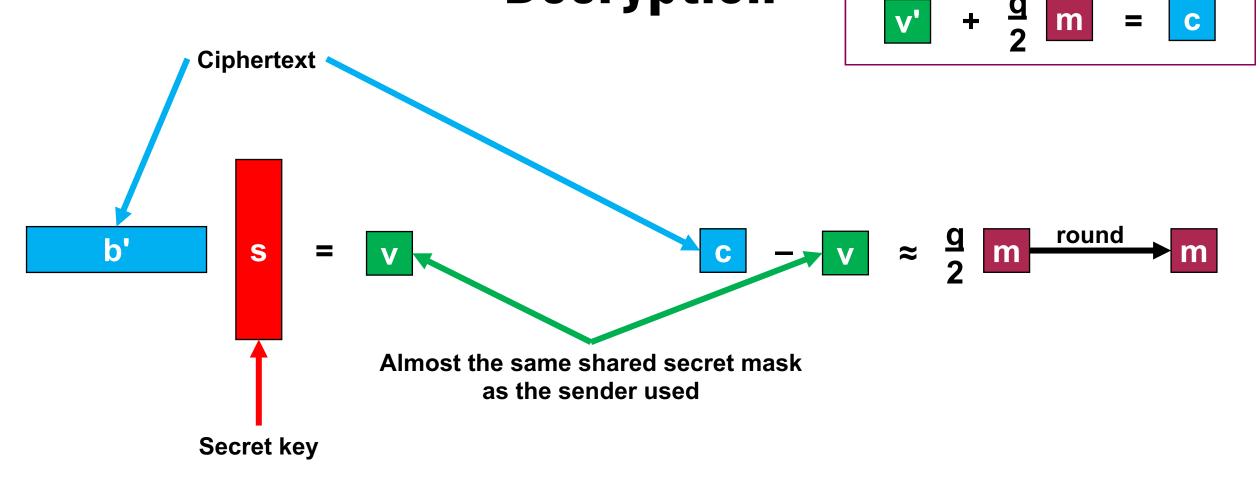
# Public key encryption from LWE Key generation



# Public key encryption from LWE Encryption



## Public key encryption from LWE Decryption



## Approximately equal shared secret

The sender uses

The receiver uses

$$V = s' (As + e) + e''$$

$$v = (s' A + e') s$$

$$= s' A s + (s' e + e'')$$

$$= s' A s + (e' s)$$

≈ s' A s

=> Can decrypt as long as noise terms are small with high probability

# Security of public key encryption

#### Theorem:

If the decision learning with errors problem is hard, then this public key encryption scheme is semantically secure against chosen plaintext attacks.

Is the decision learning with errors problem hard?

# 4. Difficulty of LWE Lattice problems

#### Hardness of decision LWE — "lattice-based"

worst-case gap shortest vector problem (GapSVP)

poly-time [Regev05, BLPRS13]

average-case decision LWE

#### Lattices

Let  $\mathbf{B} = \{\mathbf{b}_1, \mathbf{b}_n\} \subseteq \mathbb{Z}_q^{n \times n}$  be a set of linearly independent basis vectors for  $\mathbb{Z}_q^n$ . Define the corresponding **lattice** 

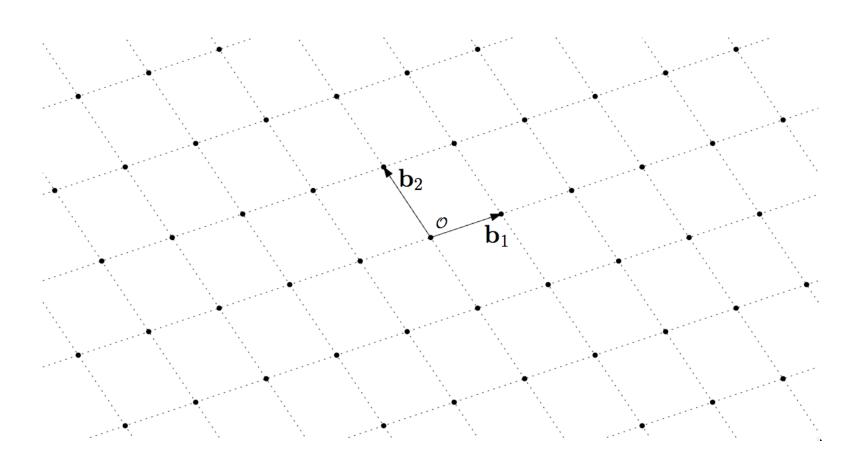
$$\mathcal{L} = \mathcal{L}(\mathbf{B}) = \left\{ \sum_{i=1}^n z_i \mathbf{b}_i : z_i \in \mathbb{Z} \right\} .$$

(In other words, a lattice is a set of *integer* linear combinations.)

Define the **minimum distance** of a lattice as

$$\lambda_1(\mathcal{L}) = \min_{\mathbf{v} \in \mathcal{L} \setminus \{\mathbf{0}\}} \|\mathbf{v}\|$$
.

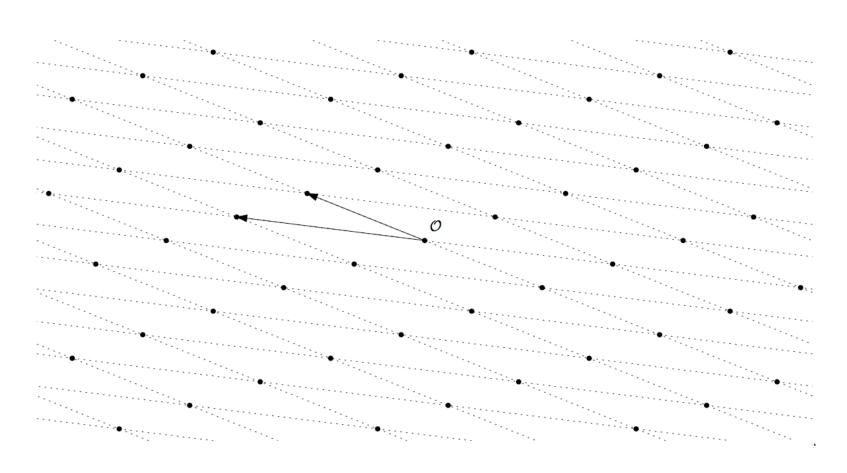
#### Lattices



Discrete additive subgroup of  $\mathbb{Z}^n$ 

Equivalently, integer linear combinations of a basis

#### Lattices

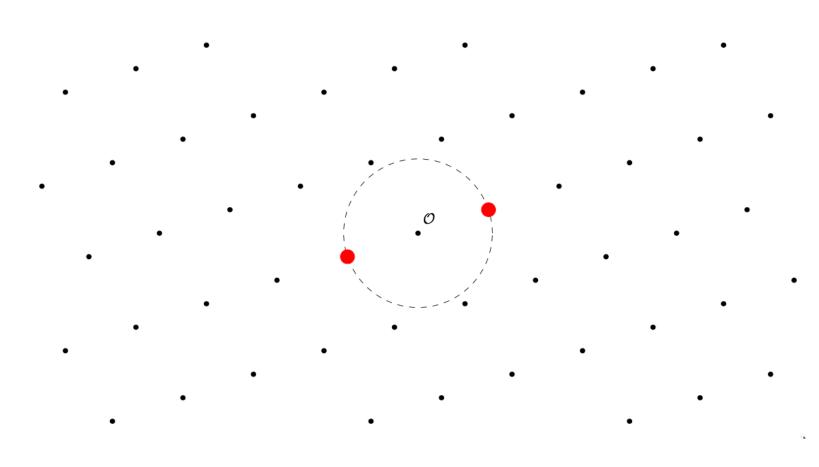


There are many bases for the same lattice — some short and orthogonalish, some long and acute.

# **Equivalence of bases**

Two  $n \times n$  matrices B and B' generate the same lattice  $\mathcal{L}$  if and only if B and B' are related by a unimodular matrix, i.e. B' = BU where U is a  $n \times n$  matrix with integer entries and determinant  $\pm 1$ .

# Shortest vector problem

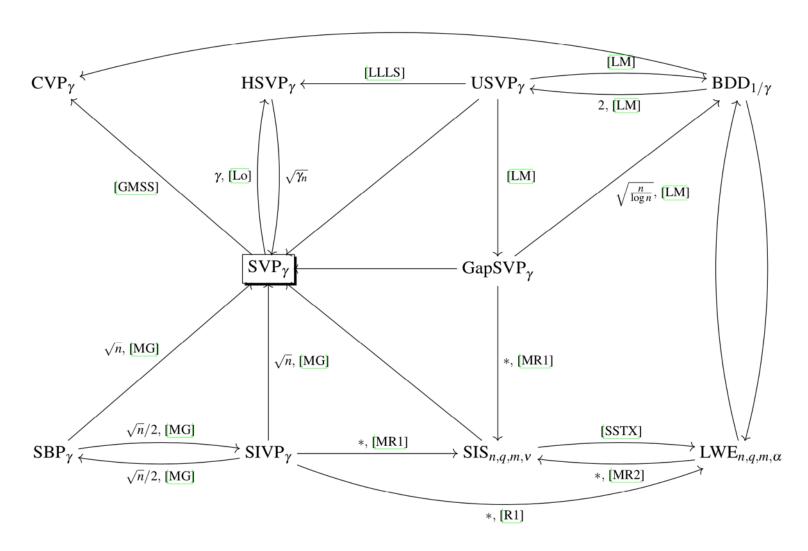


Given some basis for the lattice, find the shortest non-zero lattice point.

# Shortest vector problems

- Shortest vector problem (SVP): Given a basis B for  $\mathcal{L}$ , find a vector  $\vec{v} \in \mathcal{L}$  such that  $||\vec{v}|| = \lambda_1(\mathcal{L})$ .
- Approximate shortest vector problem (SVP $_{\gamma}$ ): Fix  $\gamma > 1$ . Given a basis B for  $\mathcal{L}$ , find a non-zero vector  $\vec{v} \in \mathcal{L}$  such that  $||\vec{v}|| \leq \gamma \cdot \lambda_1(\mathcal{L})$ .
- Decision approximate shortest vector problem (GapSVP $_{\gamma}$ ): Fix  $\gamma > 1$  and r > 0. Given a basis B for  $\mathcal{L}$  where either  $\lambda_1(\mathcal{L}) \leq r$  or  $\lambda_1(\mathcal{L}) \geq \gamma \cdot r$ , determine which is the case. Sometimes this is stated with r = 1.
- Shortest independent vector problem (SIVP<sub> $\gamma$ </sub>): Fix  $\gamma > 1$ . Given a basis B for a lattice  $\mathcal{L}$ , find a linearly independent set  $\{\vec{v}_1, \ldots, \vec{v}_n\}$  such that  $\max_i ||\vec{v}_i|| \leq \gamma \cdot \lambda_n(\mathcal{L})$ .

# Relations among lattice problems



Almost all problems reduce to  $\mathsf{SVP}_{\gamma}$ . For example,  $\mathsf{SIVP}_{\gamma}$  reduces to  $\mathsf{SVP}_{\gamma}$ : any method that solves all instances of  $\mathsf{SVP}_{\gamma}$  can be used to solve instances of  $\mathsf{SIVP}_{\gamma}$ , up to a loss of the factor of  $\sqrt{n}$  in the subscript.

# Regev's reduction: LWE to shortest vector

**Theorem.** [Reg05] For any modulus  $q \leq 2^{\text{poly}(n)}$  and any discretized Gaussian error distribution  $\chi$  of parameter  $\alpha q \geq 2\sqrt{n}$  where  $0 < \alpha < 1$ , solving the decision LWE problem for  $(n, q, \mathcal{U}, \chi)$  with at most m = poly(n) samples is at least as hard as quantumly solving  $\mathsf{GapSVP}_{\gamma}$  and  $\mathsf{SIVP}_{\gamma}$  on arbitrary n-dimensional lattices for some  $\gamma = \tilde{O}(n/\alpha)$ .

The polynomial-time reduction is extremely non-tight: approximately  $O(n^{13})$ .

[Regev; STOC 2005]

#### Finding short vectors in lattices

#### **LLL basis reduction algorithm**

- Finds a basis close to Gram–Schmidt
- Polynomial runtime (in dimension), but basis quality (shortness / orthogonality) is poor

#### **Block Korkine Zolotarev (BKZ) algorithm**

- Trade-off between runtime and basis quality
- In practice the best algorithm for cryptographically relevant scenarios

#### Solving the (approximate) shortest vector problem

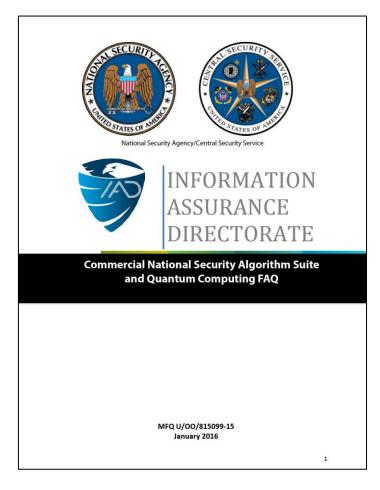
The complexity of  $\mathsf{GapSVP}_{\gamma}$  depends heavily on how  $\gamma$  and n relate, and get harder for smaller  $\gamma$ .

| Algorithm                     | Time                                                                                                               | Approx. factor $\gamma$                                                                |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| LLL algorithm various various | $\operatorname{poly}(n) \ 2^{\Omega(n\log n)}$ $2^{\Omega(n)}$ time and space                                      | $2^{\Omega(n \log \log n / \log n)}$ $\operatorname{poly}(n)$ $\operatorname{poly}(n)$ |
| Sch87                         | $2^{	ilde{\Omega}(n/k)}$                                                                                           | $2^k$                                                                                  |
|                               | $\begin{array}{c} \mathrm{NP} \cap \mathrm{co}\text{-}\mathrm{NP} \\ \mathrm{NP}\text{-}\mathrm{hard} \end{array}$ |                                                                                        |

In cryptography, we tend to use  $\gamma \approx n$ .

# 5. Standardization of PQ cryptography

# Standardizing post-quantum cryptography



"IAD will initiate a transition to quantum resistant algorithms in the not too distant future."

NSA Information
 Assurance Directorate,
 Aug. 2015



Aug. 2015 (Jan. 2016)

# Primary goals for post-quantum crypto

Confidentiality in the public key setting

Authentication & integrity in the public key setting

- Public key encryption schemes
- Alternatively: key encapsulation mechanisms
  - KEMs are a generalization of two-party Diffie—Hellman-style key exchange
  - Easy to convert KEM into PKE and vice versa

Digital signature schemes

# Families of post-quantum cryptography

#### Hash- & symmetric-based

- Can only be used to make signatures, not public key encryption
- Very high confidence in hashbased signatures, but large signatures required for many signature-systems

#### Code-based

- Long-studied cryptosystems with moderately high confidence for some code families
- Challenges in communication sizes

#### Multivariate quadratic

- Variety of systems with various levels of confidence and trade-offs
- Substantial break of Rainbow algorithm in Round 3

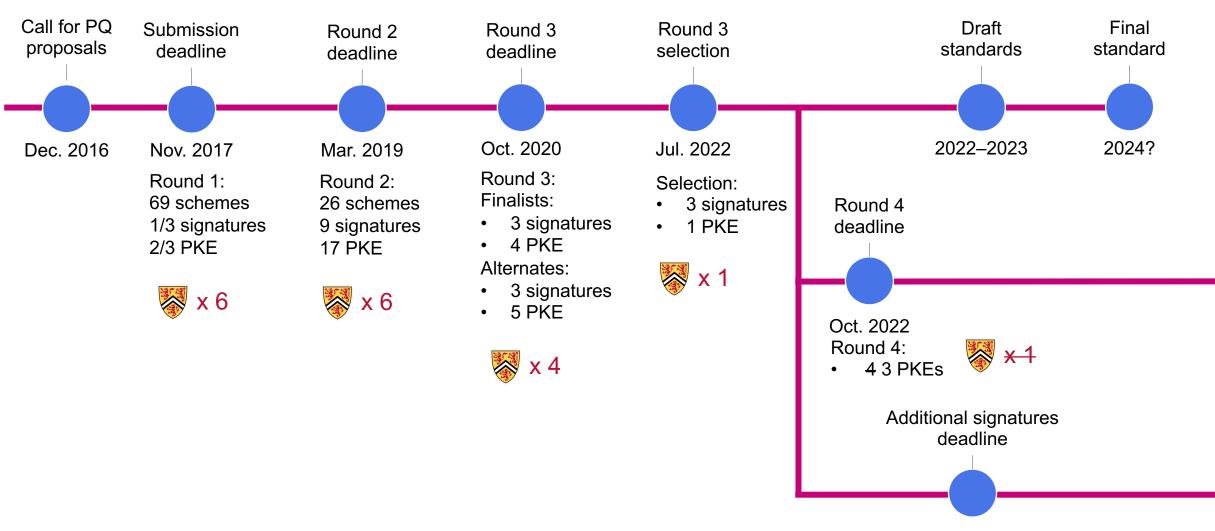
#### Lattice-based

- High level of academic interest in this field, flexible constructions
- Can achieve reasonable communication sizes

#### Elliptic curve isogenies

- Newest mathematical construction
- Small communication, slower computation
- Substantial break of SIKE in Round 4

# NIST Post-quantum Crypto Project timeline



#### NIST Round 3 selections and Round 4

#### **Selections**

# **Key encapsulation** mechanisms

Lattice-based: Kyber

#### **Signatures**

- Lattice-based: Dilithium, Falcon
- Hash-based: SPHINCS+

#### Round 4

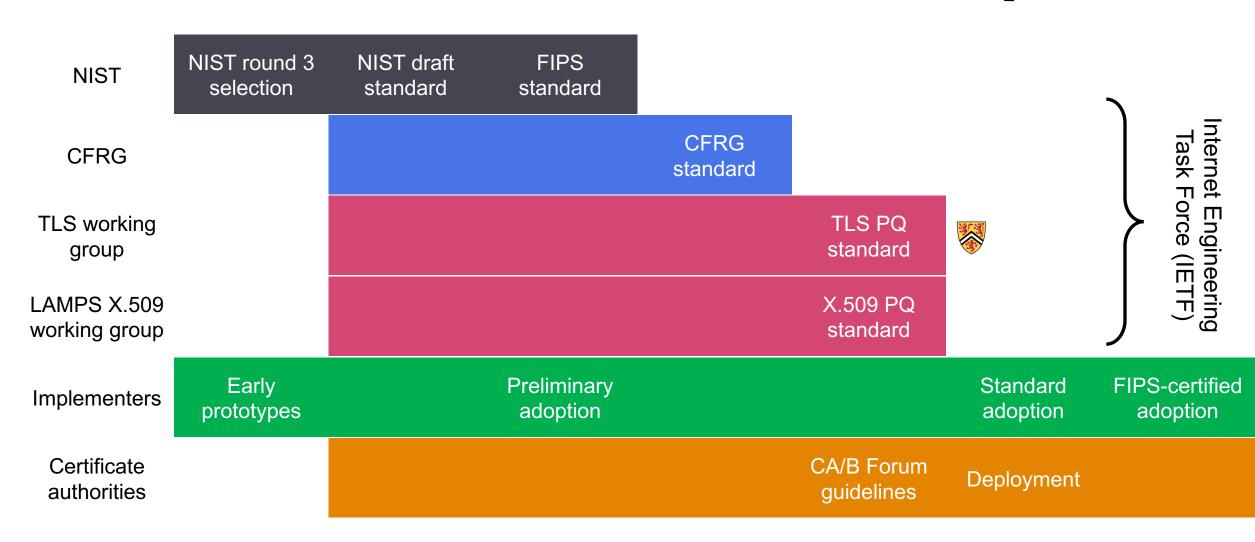
#### Key encapsulation mechanisms

- Code-based: BIKE, Classic McEliece, HQC
- Isogeny-based: SIKE

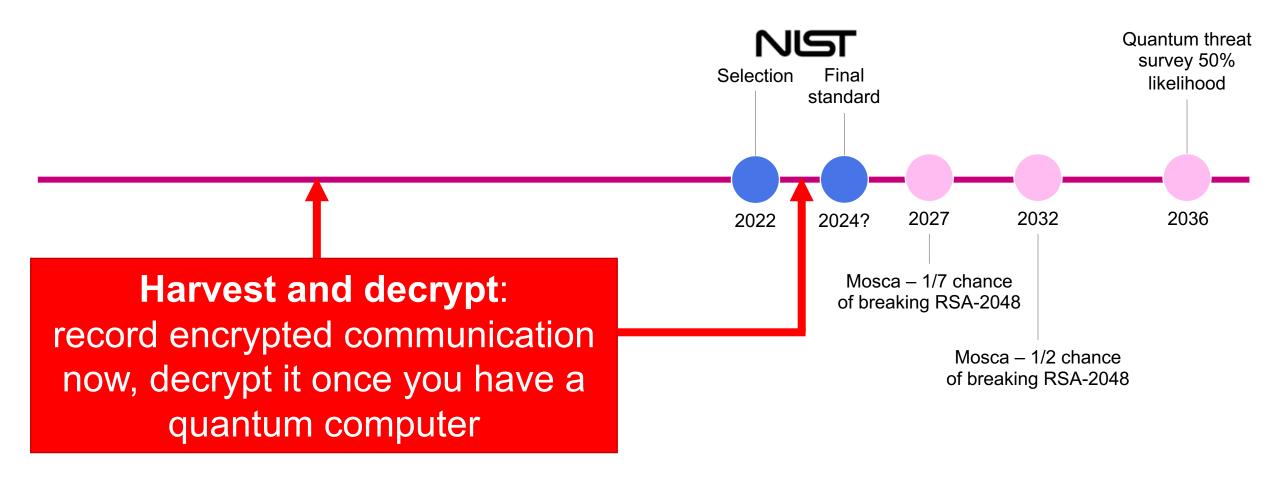
#### **Signatures**

 Call for additional signature schemes

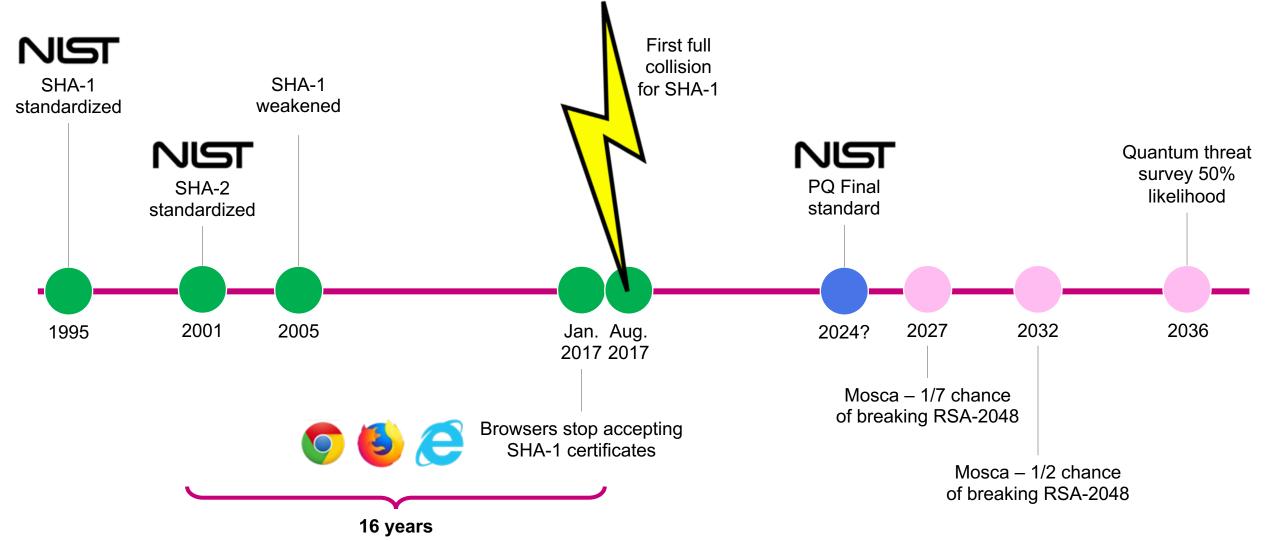
# Paths to standardization and adoption



#### Will we be ready in time?



#### Timeline to replace cryptographic algorithms



# Trade-offs with post-quantum crypto

Confidence in quantum-resistance



Fast computation

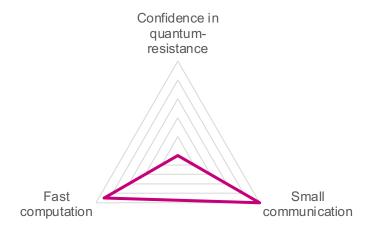
**Small communication** 

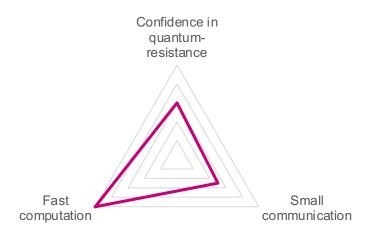
# Trade-offs with post-quantum crypto

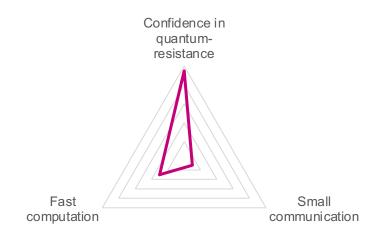
RSA and elliptic curves

Lattice-based cryptography

Hash-based signatures







TLS handshake: 1.3 KB

TLS handshake: 11.2 KB

TLS handshake: 24.6 KB

#### Addressing the challenges of using PQ crypto

Lack of confidence in security

Slow computation

Make better PQ crypto

Large communication

#### Addressing the challenges of using PQ crypto

Lack of confidence in security

"Hybrid": Use multiple algorithms

Slow computation

Actually not too bad; research on algorithmic optimizations; general CPU improvements

Large communication

Change how security and network protocols use PQ crypto

# Hybrid approach: use traditional and post-quantum simultaneously such that successful attack needs to break both



# Wrapping up

#### Post-quantum crypto at University of Waterloo

#### Main research areas:

- Design of post-quantum cryptosystems
- Cryptanalysis of post-quantum problems on classical or quantum computers
- Efficient implementations of post-quantum cryptography
- Adapting network protocols to post-quantum algorithms

#### Main mathematical problems:

- Isogeny-based
- Lattice-based (learning with errors, NTRU)

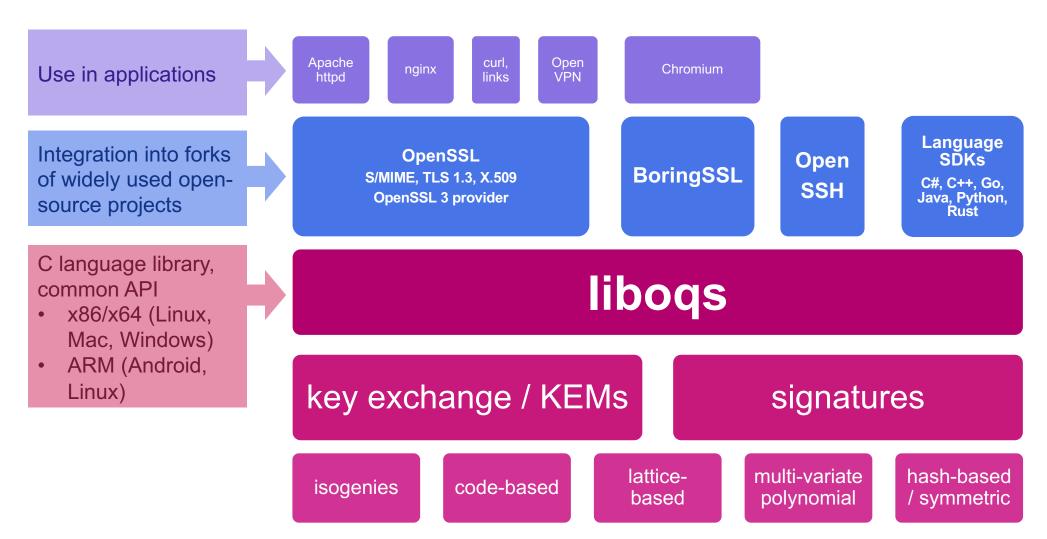
#### Involved in several NIST candidates:

- Winner:
  - CRYSTALS-Kyber (module learning with errors)
- Round 3 alternates:
  - FrodoKEM (learning with errors)
  - NTRU (also lattice based)
  - **SIKE** (isogenies on elliptic curves)

Lead the Open Quantum Safe opensource software project



# Open Quantum Safe Project



Led by University of Waterloo

#### Industry partners:

- Amazon Web Services
- Cisco
- evolutionQ
- IBM Research
- Microsoft Research

#### Additional contributors:

- Senetas
- PQClean project
- Individuals

#### Financial support:

- AWS
- Canadian Centre for Cyber Security
- Cisco
- NLNet
- NSERC
- Unitary Fund
- Verisign

https://openquantumsafe.org/ • https://github.com/open-quantum-safe/

#### Where to learn more

#### NIST Post-Quantum Crypto Standardiation

https://nist.gov/pqcrypto

#### Quantum threat timeline

https://globalriskinstitute.org/publications/guantum-threat-timeline/

#### Open Quantum Safe project

https://openquantumsafe.org https://github.com/open-quantum-safe/

#### Background on post-quantum crypto

- Post-Quantum Cryptography, by Bernstein, Buchmann, Dahmen (2009) <a href="https://link.springer.com/book/10.1007/978-3-540-88702-7">https://link.springer.com/book/10.1007/978-3-540-88702-7</a>
- EU Overview Report (Feb 2021)
   https://www.enisa.europa.eu/publications/post
   -quantum-cryptography-current-state-and-quantum-mitigation

#### Lattice-based crypto

- Mathematics of Public Key Cryptography, by Steven Galbraith (2012) <a href="https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html">https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html</a>
- A Decade of Lattice Cryptography, by Chris Peikert (2017) <a href="https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf">https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf</a>
- On the concrete hardness of learning with errors, by Albrecht, Player, Scott (2015) <a href="https://eprint.iacr.org/2015/046">https://eprint.iacr.org/2015/046</a>

#### CO 485 Mathematics of Public Key Cryptography

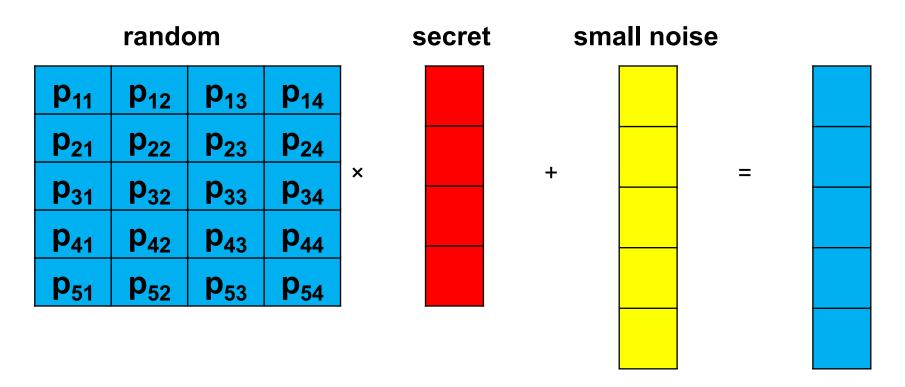
 Includes lattice-based cryptography and isogeny-based cryptography

#### CO 487 Applied Cryptography

 Includes lattice-based cryptography and cryptographic protocols

# Appendix

# Module learning with errors problem



every matrix entry is a polynomial in  $\mathbb{Z}_q[x]/(x^n+1)$ 

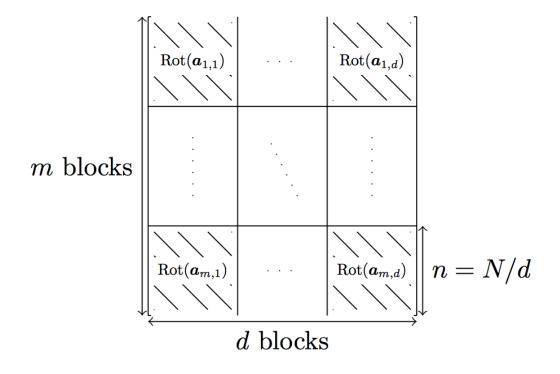
Search Module-LWE problem: given blue, find red

#### Ring-LWE versus Module-LWE

#### **Ring-LWE**

| 4  | 1  | 11 | 10 |
|----|----|----|----|
| 3  | 4  | 1  | 11 |
| 2  | 3  | 4  | 1  |
| 12 | 2  | 3  | 4  |
| 9  | 12 | 2  | 3  |
| 10 | 9  | 12 | 2  |
| 11 | 10 | 9  | 12 |

#### **Module-LWE**



# Learning with Rounding

#### **Learning with Errors**

Noise comes from adding an explicit (Gaussian) error term

$$\langle \mathbf{a}, \mathbf{s} \rangle + e$$

#### **Learning with Rounding**

 Noise comes from rounding to a smaller interval

$$\lfloor \langle \mathbf{a}, \mathbf{s} 
angle 
floor_p$$

 Shown to be as hard as LWE when modulus/error ratio satisfies certain bounds

# NTRU problem

For an invertible  $s \in R_q^*$  and a distribution  $\chi$  on R, define the **NTRU** distribution  $N_{s,\chi}$  to be the distribution that outputs  $e/s \in R_q$  where  $e \leftarrow \chi$ .

**Definition** [NTRU decision problem]. Given independent samples  $a_i \in R_q$  where every sample is distributed according to either:

- 1.  $N_{s,\chi}$  for some randomly chosen  $s \in R_q$  (fixed for all samples), or
- 2. the uniform distribution on  $R_q$ ,

distinguish which is the case.

This is a "noisy quotient" problem.

#### **NTRU**

#### **Learning with Errors**

Noisy product

$$\langle \mathbf{a}, \mathbf{s} \rangle + e$$

#### **NTRU**

 $\begin{array}{c} \bullet \text{ Noisy quotient} \\ e/s \end{array}$ 

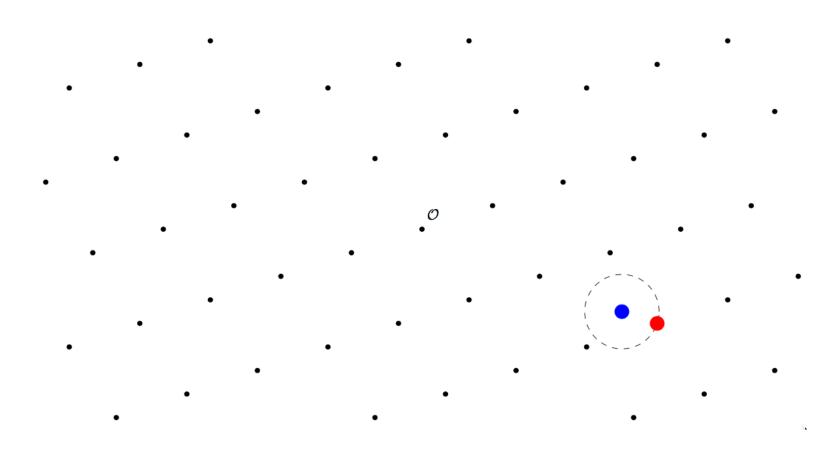
Actually predates LWE

#### Hermite normal form

**Definition.** An  $m \times n$  matrix A is in **Hermite normal form** if (informally) it is lower triangular and its largest entry in each row is on the diagonal.

**Fact.** The HNF H of an integer matrix A is unique, and there is an  $n \times n$  unimodular matrix U such that H = AU.

# Closest vector problem



Given some basis for the lattice and a target point in the space, find the closest lattice point.

# Closest vector problems

- Closest vector problem (CVP): Given a basis B for  $\mathcal{L}$  and a vector  $w \in \mathbb{Q}^m$ , find a vector  $\vec{v} \in \mathcal{L}$  such that  $||\vec{w} \vec{v}||$  is minimal.
- Bounded distance decoding problem (BDD $_{\alpha}$ ): Fix  $0 < \alpha < 1/\sqrt{2}$ . Given a basis B for a lattice  $\mathcal{L}$  and a vector  $w \in \mathbb{Q}^m$  such that there is a lattice point  $\vec{v}$  with  $\|\vec{w} \vec{v}\| \le \alpha \lambda_1(\mathcal{L})$ , find  $\vec{v}$ .

(This is a CVP instance that is especially close to a lattice point.)

# Strategies for solving LWE

SIS strategy

BDD strategy

Direct strategy

See Albrecht, Player, Scott for a good survey

# **Short integer solution strategy [APS S4.1]**

Solve decision LWE by finding a short vector  $\vec{v}$  such that  $\langle \vec{v}, \vec{a} \rangle = 0$ .

- Blum, Kalai, Wasserman algorithm [APS §5.2]: combinatorial method
- Lattice reduction [APS §5.3]: Use lattice reduction to find short vectors in the scaled dual lattice (LLL, BKZ)

If we want to solve search LWE, use the search-decision equivalence in combination with solving decision LWE.

#### **Bounded distance decoding strategy [APS S4.2]**

Solve search LWE by finding a short e such that  $\langle \vec{a}, \vec{x} \rangle = b - e$  for some unknown  $\vec{x}$ .

- Babai's nearest plane algorithm
- Lindner–Peikert nearest planes, BDD by enumeration [APS §5.4]
- Reducing BDD to unique SVP [APS §5.5]: use Kannan's embedding of the LWE lattice into a higher dimensional lattice with an appropriate structure, then solve uSVP e.g. using lattice reduction

# Direct strategy [APS S4.3]

Solve search LWE by finding an  $\vec{s}'$  such that  $\langle \vec{a}, \vec{s}' \rangle$  is close to b.

- Exhaustive search [APS §5.1]: Exhaustive search for each component of  $\vec{s}$  based on the error distribution.
- Arora–Ge [APS §5.6]: solve a system of noiseless non-linear polynomials with  $\vec{s}$  as the root

# Picking concrete parameters

- Competing requirements:
  - Want small dimension (to reduce communication)
  - Want large dimension (to make problem harder)
  - Want small noise (to reduce probability of error)
  - Want large noise (to make problem harder)
  - Want small modulus (to make problem harder and save communication)
  - Want large modulus (to reduce probability of error)
- Picking concrete parameters is tricky
- Lots to consider and state of art is advancing
- Costing quantum attacks is subtle
- See NTRU and Kyber NIST submissions for worked examples