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Fundamentals of Network Security

1. Basics of Information Security
— Security architecture and infrastructure; security goals (confidentiality, integrity, availability,
and authenticity); threats/vulnerabilities/attacks; risk management
2. Cryptographic Building Blocks

— Symmetric crypto: ciphers (stream, block), hash functions, message authentication codes,
pseudorandom functions

— Public key crypto: public key encryption, digital signatures, key agreement

3.  Network Security Protocols & Standards
— Overview of networking and PKI
— Transport Layer Security (TLS) protocol
— Overview: SSH, IPsec, Wireless (Tool: Wireshark)

4.  Offensive and defensive network security

- Offensive: Pen-tester/attack sequence: reconnaissance; gaining access; maintaining access;
denial of service attacks (Tool: nmap)

— Defensive: Firewalls and intrusion detection

5.  Access Control & Authentication; Web Application Security
— Access control: discretionary/mandatory/role-based; phases
— Authentication: something you know/have/are/somewhere you are
— Web security: cookies, SQL injection
— Supplemental material: Passwords
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Ciphers: Overview

* Encrypt an arbitrary length binary string using
a shared secret key

* Provide confidentiality



Ciphers: Algorithms

Generates a secret
key k.

Encrypt a message m
using secret key k
and initialization
vector iv to obtain
ciphertext c.

Decrypt a ciphertext
c using secret key k
and initialization
vector iv to obtain
message m. /

Need an IV so that we can encrypt
different messages using the same key.
(IV omitted in older cipher designs.)




Ciphers: Security

Security goal: indistinguishability under adaptive
chosen ciphertext attack (IND-CCA2).

Adaptive chosen
ciphertext attack

e adversary can e the adversary cannot
adaptively obtain distinguish which of two
encryptions of any messages my or m; of its
messages and choosing was encrypted
decryptions of any e equivalent to semantic
ciphertexts of his security: attacker learns

: "nothing useful" from
choosing

seeing ciphertext ¢



Ciphers: Security

* Quantum impact: n-bit key
— Classical brute force search for key: 2"

— Quantum Grover search for key: 2n/2

=> Need to double key length to maintain security
level
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Stream ciphers: Overview

e Recall one-time pad: message is XORed with
an encryption key of the same length

» Stream cipher encryption/decryption
performed by having a keystream generator
output a long encryption key from a short
secret key, then XOR the long encryption key
with the message




key
IV

Stream ciphers: Overview

plaintext

keystream generator

keystream
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> ciphertext



Stream ciphers: Schemes

* One common construction: linear feedback
shift registers + non-linear filter or other non-
linearity

Standardized schemes

RC4 Weak; exploitable biases in keystream output.

A5/1 (A5/2) Used in mobile phone communications; weak.

Salsa20 / ChaCha20 Faml.ly of extremely fas.t stream ciphers, ChaCha20
starting to be standardized.

13
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Block ciphers: Overview

* Message is divided into fixed-length blocks

* Each block is separately encrypted using:
— a derived key
— an initialization vector
— the message block



Block ciphers:
Data Encryption Standard (DES)

Standardized by NIST in 1977 based on IBM
design

(effective) 56-bit key
Uses a 16-round Feistel network

Widely used in applications, some still active

Small keyspace means can be readily brute force
searched, in just a few hours on modern
computers

Triple-DES uses three applications of DES to
provide 112-bit security



Block ciphers:
Advanced Encryption Standard (AES)

Standardized by NIST in 2001 after an open
competition, winner was Rijndael

128-, 192-, or 256-bit key

Uses 10-14 rounds of a substitution-permutation
network

Widely used in applications

Very fast on modern computers due to special
processor instruction (AES-NI)

No practical attacks, theoretical attacks barely
better than brute force



Block ciphers:
Substitution-permutation network




Block ciphers: Modes of operation

* Since plaintext is divided into blocks when we
use block ciphers, how should we process
multi-block messages?



Block ciphers:
Electronic Codebook (ECB) mode

Plaintext Plaintext Plaintext
FEEREFEER [TTT1 l 5 I
\J l v
Block Cipher Block Cipher Block Cipher
Key ——=  Encryption Key —= | Encryption Key —=  Encryption
' ' '
I O [T TV T T 1] 2 I I
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

If encryption is deterministic, then the

same plaintext block is encrypted to the
same ciphertext block every time.
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Block ciphers:
Cipher Block Chaining (CBC) mode

Plaintext Plaintext Plaintext
i HEIEEER I I I
Initialization Vector (IV)
[TTTT1] - &P - - D
v v '
Block Cipher Block Cipher Block Cipher
Key *| Encryption Key * | Encryption Key *| Encryption
Y ' '
[TTTTTT] 2 1 I D [TTTTT]
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

21
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Block ciphers: ECB vs CBC mode

Original image ECB mode CBC mode

22
images courtesy of Wikipedia



Block ciphers: Modes of operations

* Many different modes with many different
properties
* Some more suitable for:
— streaming media (lossy communication)
— parallel processing
— disk encryption
* Some provide integrity checking

e See also concerns about Simon's algorithm on
some modes: https://arxiv.org/abs/1602.05973



https://arxiv.org/abs/1602.05973

Block ciphers vs. stream ciphers

Block ciphers
 Often slower

* More complex
implementation

* Better for storage

* Some modes good for
streaming communication

* Viewed as being more
secure

Stream ciphers
e Often faster

e Often easier to implement
in software and hardware

e Better for streaming
communication

* Viewed as being less secure
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Hash Functions: Overview

* Hashes an arbitrary length binary string into a
fixed length binary string

* Useful for integrity and data origin
authentication



Hash Functions: Algorithms

Keyed hash function (family)

Generates a hash
key k.

Hashes a message
m under a key k to
obtain a hash h.

H(k, m)

= h

(Note k need not be secret, just random.)

Unkeyed hash function

Hashes a
message m to

obtain a hash
h.

27



Hash Functions: Security

Collision Preimage Second preimage
resistance resistance resistance
e It is hard to find e Let x be chosen e Let x be chosen
two distinct at random. at random.
values x, and x; Given y=H(x), it Given x, it is
such that is hard to find hard to find a
H(xo)=H(x,) X’ such that distinct x” such

H(x)=y. that H(x)=H(x’).

28



Merkle—Damgard Construction

Common technique for constructing an
arbitrary-length hash function H from a

fixed-length compression function h.

IV ——

mye||pad

pad




Hash Functions: Schemes

MD5 Collision resistance broken.

SHA-1 Weak. Widely deployed.

sl s sl pagle, Bl A RERS Generally secure. Deployment in progress
SHA-512) y - DEpioy Progress.

Winner of NIST competition. NIST standardization

SHA-3 (a.k.a. Keccak) August 2015; few deployments.

Quantum impact: For an n-bit hash function, Grover:
* pre-images in time 22 (compared to 2" classically)
« collisions in time 2n/3 (compared to 2"2 classically)

Provably secure schemes (generally slower)

Based on learning with errors / shortest vector
problem

Lattice-based

RSA-based Based on factoring / RSA problem.

Quantum fingerprinting A gquantum analogue of hashing 30
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Message Authentication Codes:
Overview

* Creates an authentication tag for a message.

* Provides integrity and data origin
authentication



MACs: Algorithms

Generates a
MAC key k.

Computes a
tag t for a
message m
under key k.

Sender computes tag and sends tag and message;
verifier recomputes tag and compares with received value.



MACs: Security

Security goal: existential unforgeability under
chosen message attack (EUCMA).

Chosen message attack

e adversary can e hard to construct a new
adaptively obtain tags valid message/tag pair
for any messages of (note: message doesn’t
his choosing have to be

“meaningful”)

34



MACs: Schemes

HMAC-MD5
HMAC-SHA1

HMAC-SHA256 Almost universally used.

KMAC128/256 New SHA-3-based MAC
Poly1305-AES
Poly1305-Salsa20 High speed. Starting to be used in applications.

Poly1305-ChaCha20

Quantum impact: For an n-bit key, Grover can break in time 2"/2
See also concerns about Simon's algorithm on some modes: https://arxiv.org/abs/1602.05973

Other schemes
Wegman-Carter Information-theoretically secure.

35
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Pseudorandom Functions: Overview

* Generates a binary string that is
indistinguishable from random

e Useful for confidentiality and key generation



Pseudorandom Functions: Algorithms

Generates a
secret key.

Generates a
pseudorandom
string y from a
label x and key k.

38



Pseudorandom functions: Security

Security goal: pseudorandomness:

— Hard to distinguish the output of F(k, x) from the output of a
truly random function Random(x).

F(k, X) (unknown k) Random(x)

Did | get the answer from real or random?

39



PRFs versus PRNGs versus KDFs

PRF

Pseudorandom
function

Input: (short)
uniform random
key and label
string

Output: (longer)
computationally
uniform random
string

PRNG

Pseudorandom
number
generator

Input: (short)
random seed
Output: (longer)
computationally
uniform random
string

Update
mechanism

KDF

Key derivation
function

Input: (medium)
(non-uniform)
random key

Output: (short)
computationally
uniform random
key



PRFs, PRNGs, KDFs: Schemes

Ad hoc constructions based on hash functions, HMAC, stream ciphers

HMAC Often used as a PRF or KDF.

Dual EC DRBG NIST provably secure scheme based on elliptic curves,
- - has a backdoor.

PBKDF2, Argon2 Used for deriving pseudorandom keys from passwords.

HKDF Provably secure.

* PRNGs on computers also need to set and
update seeds from a source of entropy

41
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Public Key Encryption: Overview

Alice creates a private key / public key pair

Anyone can encrypt messages for Alice based
on her public key, but only Alice can decrypt
those messages

Provide confidentiality

Versus ciphers: Anyone can encrypt using
public key, whereas you need the shared
secret for encrypting with ciphers.



Public Key Encryption: Algorithms

Generates a private
key sk and a public
key pk.

Encrypt a message m
using public key pk to
L obtain ciphertext c.

Encrypt(pk, m)

Decrypt a ciphertext
c using private key sk
-2 m to obtain message m.

Decrypt(sk, c)

45




Public Key Encryption: Security

Security goal: indistinguishability under adaptive
chosen ciphertext attack (IND-CCA2).

Adaptive chosen
ciphertext attack

e adversary can e the adversary cannot
adaptively obtain distinguish which of two
decryptions of any messages m, or m, of its
ciphertexts of his choosing was encrypted

choosing

46



Public Key Encryption: Schemes

Standardized schemes

RSA PKCS#1 Based on factoring

DHIES Based on finite-field discrete logarithms
ECIES Based on elliptic curve discrete logarithms
Quantum impact: Shor’s algorithm can break all of these in polynomial time.

Post-quantum schemes

Based on (module/ring) learning-with-errors problem
Based on NTRU problem

Code-based Based on bounded distance decoding problem

Lattice-based

47



Hybrid encryption

To encrypt a long message m, typically use
hybrid public key encryption:

1. Pick a random secret key k for a symmetric
cipher like AES.

2. ¢, & AES.Encrypt(k, m)
3. ¢, & RSA.Encrypt(pk, k)
4. ciphertext =(c,, c,)

Faster than encrypting the whole message using
public key encryption.



Hybrid encryption using the
KEM/DEM approach

DEM KEM/DEM

KEM

Key encapsulation

mechanism

* Like public key
encryption, but
with no
message —
sender/receiver
collectively
generate a
random shared
secret

Data encapsulation
mechanism

* Like symmetric
encryption

Construct a
public key
encryption
scheme using a
KEM to share a
key which is
used in a DEM
to encrypt a
long message
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Digital Signatures: Overview

Alice creates a private key / public key pair

Only the person with the private key (Alice) can
create valid signatures, but anyone with the
public key can verify

Provide data origin authentication, integrity, non-
repudiation

Useful for entity authentication

Versus MACs: Anyone can verify using public key.



Digital Signatures: Algorithms

Generates a signing
key sk and a
verification key vk.

Sign a message m
using signing key sk
to obtain a signature
o.

Check validity of
signature o of a
message m under
verification key vk
and output O or-l.




Digital Signatures: Security

Security goal: existential unforgeability under
chosen message attack (EUCMA).

Chosen message attack

e adversary can e hard to construct a new
adaptively obtain valid signature/message
signatures for any pair (note: message

doesn’t have to be

messages of his y . §
meaningful”)

choosing

53



Digital Signatures: Schemes

Typically hash long message to short string then sign short string

Standardized schemes

RSA PKCS#1 Based on factoring

DSA Based on finite-field discrete logarithms
ECDSA Based on elliptic curve discrete logarithms
Quantum impact: Shor’s algorithm can break all of these in polynomial time.

Post-quantum schemes

Merkle-Lamport Based on secure hash functions

Based on short integer solution problem

Lattice-based Based on (module/ring) learning-with-errors problem
Based on NTRU problem

Multi-variate quadratic

54

Symmetric Based on zero-knowledge proofs
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Key Exchange: Overview

* Two parties establish an authenticated secret
session key that they can use to exchange
encrypted data

e Useful for entity authentication,
confidentiality, data origin authentication,
Integrity



Key Exchange: Protocol
Example: Unauthenticated Diffie—Hellman

Let g be a generator of a cyclic group of prime order gq.

Alice Bob
xﬁ{l,...,q—l} yﬁ{l,...,q—l}
X —g" Y < ¢¥

X

=

Y

%

k<YY" k <+ XY




Key Exchange: Protocol
Example: Signed Diffie—Hellman

Let g be a generator of a cyclic group of prime order q.

Alice Bob
(ska,pka) < SIG.KeyGen(1?) (skp,pkp) + SIG.KeyGen(1?)
obtain pkp obtain pka
xi{l,...,q—l} yi{l,...,q—l}
X +—g° Y + ¢¥
oa < Sign(ska, X) op < Sign(skp,Y)
g
L
abort if Verify(pkp,Y, o) =0 abort if Verify(pka, X,04) =0

k+Y?* k +— XY




Key Exchange: Security

Security goal: indistinguishability of session keys
under various attack scenarios.

Attack scenarios

e adversary can control e hard to distinguish the
communications, real session key from

* learn session keys of other random string of the
el same length

e learn parties’ long-term
keys (“forward secrecy”)

e |earn parties’ random coins

59



Key Exchange: Schemes

Commonly used schemes

RSA key transport Based on factoring

Signed-Diffie-Hellman Based on finite-field discrete logarithms

Signed elliptic curve

Diffie—Hellman Based on elliptic curve discrete logarithms

MaQyv / ECMQV Based on discrete logarithms

Quantum impact: Shor’s algorithm can break all of these in polynomial time.

Post-quantum schemes

Based on (module/ring) learning-with-errors problem

Lattice-based key exchange
Based on NTRU problem

Code-based key exchange Based on bounded distance decoding problem

Isogenies-based key

Based on isogenies on super-singular elliptic curves
exchange

Information-theoretically secure based laws of

ntum k istribution i
Quantum key distributio quantum mechanics

60
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Matching key sizes

* Applications often use multiple cryptographic primitives
together

* Only as secure as strength of weakest scheme / key

* Lots of recommendations based on forecast computational
power (but not cryptographic breakthroughs!)

— http://www.keylength.com/

Security Cipher Finite field
(RSA/DSA)

Short-term approx. 1024

protection

Medium 128 256 2048-3072 256
(e.g. until

2030)

Long-term 256 512 approx. 15360 512

(e.g. past 2030) .


http://www.keylength.com/

Lots more cryptographic primitives

* minicrypt: oblivious transfer, bit commitment

* identity-based encryption, attribute-based
encryption, functional encryption

* group signatures

* fully homomorphic encryption

* secure multi-party computation

* password-authenticated key exchange
 client puzzles / proofs of work -> Bitcoin, ...



