
Fundamentals of Network Security
5. Access control • Authentication

• Web Application Security
CryptoWorks21 • July 16, 2021

Dr Douglas Stebila

https://www.douglas.stebila.ca/teaching/cryptoworks21

https://www.douglas.stebila.ca/teaching/cryptoworks21

Fundamentals of Network Security
• Basics of Information Security

– Security architecture and infrastructure; security goals (confidentiality, integrity, availability,
and authenticity); threats/vulnerabilities/attacks; risk management

• Cryptographic Building Blocks
– Symmetric crypto: ciphers (stream, block), hash functions, message authentication codes,

pseudorandom functions
– Public key crypto: public key encryption, digital signatures, key agreement

• Network Security Protocols & Standards
– Overview of networking and PKI
– Transport Layer Security (TLS) protocol
– Overview: SSH, IPsec, Wireless (Tool: Wireshark)

• Offensive and defensive network security
– Offensive: Pen-tester/attack sequence: reconnaissance; gaining access; maintaining access

(Tool: nmap)
• Supplemental material: denial of service attacks

– Defensive: Firewalls and intrusion detection
• Access Control & Authentication; Web Application Security

– Access control: discretionary/mandatory/role-based; phases
– Authentication: something you know/have/are/somewhere you are
– Web security: cookies, SQL injection
– Supplemental material: Passwords

Network security vs. computer security

Network security Computer security

Controlling access to network resources Controlling access to computer resources

Awareness of services running on a
network

Awareness of software running on a
computer

Concerned about misconfigurations,
violations of access policy

Concerned about misconfigurations,
software bugs

But…
• Modern computers and applications are very network-

dependent
• Modern network devices are small computers
• Web-based applications are widespread

Assignment 3

3a) Password hash
cracking
• Use various techniques

to crack password
hashes

• Estimate the difficulty
of password hash
cracking

3b) 2-factor
authentication
• Investigate 2-factor

authentication options
in an online service you
use

Assignment 0
Downloading and installing

VirtualBox and Kali Linux

https://www.douglas.stebila.ca/teaching/cryptoworks21/

https://www.douglas.stebila.ca/teaching/cryptoworks21/

ACCESS CONTROL

Access control

• Controlling or restricting the use of
information assets or resources
– Recall our security goals were all about actions by

authorised/unauthorised users

Terminology

Subjects

• Entities requesting
access to a resource
• Examples: Person

(User), Process, Device

• This is an active role:
• Entity initiates access

request and is user of
information/resource

Objects

• Resources or entities
which contain
information
• Examples: Disks, files,

records, directories

• This is a passive role
• Object is repository for

information or the
resources that a subject
tries to access

Access control terminology
Access modes /

permissions / rights
• Which actions a subject can

perform on an object
– Create
– Read
– Write: observe and alter
– Execute: neither observe nor

alter
– Append: limited type of

alteration
– Search
– Destroy

Owner

• In some approaches we
distinguish the subject who
created or has primary
control of the object as the
"owner" who gets to make
decisions about who else
can access it

• In other approaches we
don't distinguish the owner

8

Common principles

• Blacklists: access
generally permitted
unless expressly
forbidden

• Whitelists: access
generally forbidden
unless expressly
permitted

• Principle of least
privilege: restrict access
to minimum needed to
perform day-to-day job
(“need to know
principle”)

• Separation of duties: for
critical tasks, divide task
into steps that must be
performed by different
entities

Access control process

1. Policy administration: privilege is allocated and
administered
a) Define the authorisation policy for subjects and objects
b) Distribute access credentials/token to subject
c) Change/revoke authorisation whenever necessary

2. Policy enforcement: privilege is required to gain
access
a) Identify the subject
b) Authenticate subject
c) Check policy and then grant access
– Also need to monitor access

10

Types of access control policies
How will access control decisions be made?

Discretionary access control
• Decision at the discretion of some individual, possibly

the information asset owner

Mandatory access control
• System wide set of rules applied

Role-based access control
• Access permissions based on the role of the

individual, rather than the identity (user,
administrator, student, etc)

Discretionary access control

• Access rights to an object or resource are
granted at the discretion of the owner
– For example, the security administrator, the

owner of the resource, or the person who created
the asset

• Often implemented via access control lists
(ACLs)

• Popular operating systems use DAC with
access control lists.

12

Discretionary access control
In Windows 8:
• Right-click a file
• -> Properties
• -> Security

• ACL lists
– groups or users with

access permission
– the type of permission

granted

13

Discretionary access control
In Unix command line:
• ls -l

– Object (file/directory) on each line
– 3 groups of 3 letters
– Permissions indicated for: Owner, Group and Other
– Type of permissions: r read, w write and x execute

The owner (dstebila) can read/write, anyone in the group (staff) can
read, other users cannot do anything.

14

Mandatory access control
• A central authority assigns attributes to objects and to subjects

• For example:
– subjects assigned clearance levels,
– objects assigned classification levels

• Have a system-wide set of rules relating attributes of the objects
and subjects to the modes of access that are permitted

• MAC is mandatory in the sense that entities are not able to decide
which other entities they want to allow to access resources, the
system rules apply
– the system denies users full control over access to the resources they

create

15

Mandatory access control
Example – Security level hierarchy

Top Secret

Secret

Confidential

Classified

Unclassified

16

Role-based access control
• Access rights are based on the role of the subject, rather

than the subject’s individual identity

• A role is some abstract collection of procedures that many
subjects need to perform
– Often associated to a job type
– Examples:

• In education: instructor, TA, student
• In finance: approver, submitter, administrator

• A subject could have more than one role
– Example: Tutor may be a student and also a staff member
– But can only be acting in one role at any particular time

• More than one subject could have the same role
– Example: Lots of students!

17

2) Policy enforcement

Identify the subject Who are you claiming
to be?

Authenticate the
subject

Provide evidence that
you are who you
claim to be

Check policy then
grant access

System checks that
you are permitted to
access resource in
the manner
requested, or
prevents access if
unauthorised

18

Access control process - conceptual diagram

Resource provider domainResource
owner Subject

access request
E EPEPaccess

authorisation

credentials

Th
e
pict
ure
can
't
be
dis
pla
yed
.

Object

PAP

Legend PAP: Policy Administration Point AC policy definition phase
PEP: Policy Enforcement Point AC policy enforcement phase

User
authentication

policy

19

Access control phases – conceptual diagram
example: limiting which of your friends can see a Facebook photoset

20

Legend PAP: Policy Administration Point AC policy definition phase
PEP: Policy Enforcement Point AC policy enforcement phase

Access control phases – conceptual diagram
example: limiting which of your friends can see a Facebook photoset

Resource provider domainResource
owner Subject

access request
E EPEPaccess

authorisation

credentials

Th
e
pict
ure
can
't
be
dis
pla
yed
.

Object

PAP

User
authentication

policy

Another
person

Facebook UI
for choosing
who can see

Facebook

“Friends except
acquaintances”

Embarrassing
picture

Facebook checks
person’s

password/cookie

Facebook checks
if person is my

friend and not on
my acquaintance

list

Other person’s
credentials (password)
not actually set by me
– so diagram doesn’t

always apply.
Me Policy definition

Policy enforcem
ent

21

AUTHENTICATION

Access control process

1. Policy administration: privilege is allocated and
administered
a) Define the authorisation policy for subjects and objects
b) Distribute access credentials/token to subject
c) Change/revoke authorisation whenever necessary

2. Policy enforcement: privilege is required to gain
access
a) Identify the subject
b) Authenticate subject
c) Check policy and then grant access
– Also need to monitor access

23

User authentication

• Authenticators can be categorised as:
– Knowledge-Based (Something you know)
– Object-Based (Something you have)
– ID-Based (Something you are)
– Location-based (Somewhere you are)

• Multi-factor authentication uses
combinations from multiple different
categories of authenticators

24

Knowledge-based authentication:
Something you know: passwords

• Passwords are human-memorizable strings
that are used for authentication.

• Threats against passwords:
– brute-force online/offline guessing
– stealing the password
– stealing a database of passwords (or password

verifiers)
– hard-coded passwords

Generating passwords

User-selected passwords
• Use a ‘strong’ password

– Aspects include minimum length,
character set, prohibiting use of identifiers
or known associated items as passwords,
limitation on length of time before change
required

• Store password securely
– Not on a post-it note on your monitor (?)

• Don’t share password with other
entities
– Colleagues, friends, family, etc.

• Don’t use same password for multiple
systems
– Different unrelated passwords for

work/study, online banking, social media,
etc.

Computer-generated passwords
• Should be high entropy

• From a cryptographically strong source
of (pseudo)randomness

• Challenges with usability

https://xkcd.com/936/

27

https://xkcd.com/936/

Storing passwords

• Server databases are regularly compromised.
• Good practices involve not storing the raw

password in the database.
• Instead, store a hash of the password.
• Even better: store a hash of the password

combined with a salt.

Hashing passwords

Benefits:
• compromise of the database

doesn’t reveal the user’s
password

• almost no overhead for storage
and login

Instead of storing the user’s
password “123456”, store the hash
of the password:
SHA-
1(“123456”)=7c4a8d09ca3762af61e
59520943dc26494f8941b.

At login time:
• take the password the user

typed,
• hash it,
• see if it matches the hash stored

in the database.

Drawbacks:
• can’t recover passwords for users

who forget
• attackers could create a table of

password hashes to compare
against database
– Demo

http://lmgtfy.com/?q=7c4a8d09ca3762af61e59520943dc26494f8941b

Salting

• We can defeat tables of hashes by salting the
password:

1. For each user, pick a random k-bit string, say k=80,
called the salt.

2. Store H(salt, password) and the salt.

• When the attempts to login with password’:
1. Lookup the salt for that user.
2. Compute H(salt, password’).
3. See if it matches the stored hash value.

Password hardening
• You can slow down brute-force attacks even more by hashing the

password multiple times.
• Instead of storing

H(salt, password)
store

H(H(H(…H(salt, password)))
with 10000 hash function applications.

• My computer can apply SHA1 3190046 times per second
• So 10000 times only takes in 0.003 seconds

• Doesn’t slow down login much.
• But it does slow down brute-force attacks by a factor of 10000.

• PBKDF2 (2000) (widely used; fairly secure); bcrypt; scrypt; Argon2
(2015) (best available approach)

31

Object-based authentication:
something you have

• Characterized by
(exclusive) physical
possession of a token.

• Examples:
– Physical key
– Magnetic swipe card
– Phone that can receive

SMS messages (?)
– Token used for

generating access codes

• Advantages:
– Difficult to share (effort

required to make a copy)
– If lost, the owner may

realise - sees evidence of
the loss

• Disadvantages:
– If lost, the finder can

make use of the token

32

One-time password tokens

• Physical device that generates a sequence of one-
time passwords

• Need to have password generators in the token
and at the host system that are synchronized to
produce the same sequence of random
passwords

• Two general methods:
– Clock-based tokens
– Counter-based tokens

33

Clock-based tokens – TOTP
Time-based One-Time Password (RFC 6238)

Clock-based one-time tokens

Server

clock

algorithm

compare

clock

algorithm

User's
token database

username

Clocks in token and host system
must be (roughly) synchronised

seed

seed

pin

35

Phones as "something you have"
Idea for one-time
passwords:
1. Register your mobile

phone number with
the server

2. Server sends you a text
message with a one-
time password

3. Use that one-time
password during login

Is this secure?

• Yes
– Only you have your phone (or

it's locked) so no one else can
access the OTP you received

• No
– Can an attacker change the

mobile number associated
with your account?

– Can an attacker change the
SIM card associated with your
mobile number?

– Can SMS messages be
intercepted?

36

ID-based authentication:
something you are

• Characterized by
uniqueness to one
person.

• Examples:
– Biometrics such as

fingerprint, eye scan,
face scan, voiceprint,
signature

• Advantages:
– Characteristic can’t be

forgotten or lost
– May be difficult to copy,

share or distribute
– Should require the person

being authenticated to be
present at the time and
point of authentication

• Disadvantages:
– Harder to replace a

compromised biometric
authenticator, than to
replace passwords or
tokens

37

Biometric authentication systems

• Sensor: captures readings of the biometric signal of an
individual
– Example: camera that reads a fingerprint

• Feature extractor: processes the acquired biometric
signal to extract a set of discriminatory features
– Example: software that extracts positions and lengths of ridges

and whorls from a fingerprint image

MatcherFeature
Extractor

Sensor

Database

38

Biometric authentication systems

• Database: stores biometric template(s) for each user
• Matcher: compares values captured during

identification/verification with values stored during
enrolment

MatcherFeature
Extractor

Sensor

Database

39

Location-based authentication:
somewhere you are

• Characterized by your location in space and/or
time

• Examples:
– Triangulation of cell-phone signals
– GPS tracker
– IP address -> database/range of IP addresses
– Link location to time
– Are you in the exam room?

40

Location-based authentication:
geo-blocking

41

Assignment 3

3a) Password hash cracking
• Use various techniques to

crack password hashes
• Estimate the difficulty of

password hash cracking
• Read the supplemental

material at the end of
these slides

3b) 2-factor authentication
• Investigate 2-factor

authentication options in
an online service you use

Assignment 0
Downloading and installing

VirtualBox and Kali Linux

https://www.douglas.stebila.ca/teaching/cryptoworks21/

https://www.douglas.stebila.ca/teaching/cryptoworks21/

WEB APPLICATIONS

Session management and cookies
SQL injection attacks

Why web application security?

• More and more applications are getting web-
enabled or converted to web apps.

• Blocking traffic at network layer doesn't work
as all traffic flows through port 80/443 (or
what the web server is configured on)

• Firewalls don't filter application level traffic

44

OWASP Top Ten
(2017 Edition)

A1: Injection

A2: Broken
Authentication

and Session
Management

A3: Sensitive Data
Exposure

A4: XML External
Entity (XXE)

A5: Broken Access
Control

A6: Security
Misconfiguration

A7: Cross-Site
Script (XSS)

A8: Insecure
Deserialization

A9: Using
Components with

Known
Vulnerabilities

A10: Insufficient
Logging &

Monitoring

http://www.owasp.org/

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

My classification:

Web-specific issue

General programming issue

General security management issue

45

http://www.owasp.org/
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

IETF Internet Protocol suite
Layer Examples

Application
web (HTTP, HTTPS)
email (SMTP, POP3, IMAP)
login (SSH, Telnet)

Transport connection-oriented (TCP)
connectionless (UDP)

Internet

addressing and routing:
• IPv4, IPv6
control (ICMP)
security (IPsec)

Link

packet framing (Ethernet)
physical connection
• WLAN (WEP, WPA)
• ADSL
• GSM/3G

Web applications
Web browsers

• HTML
– forms
– stylesheets
– Javascript
– Flash, Java applets

• HTTP
– cookies

• TLS (optional)
• TCP > IP > link layer

Web servers

• HTML
– static files
– CGI programs (PHP, Java, .Net,

Ruby, Python, Javascript, Perl,
…)
• use XML web services
• use SQL databases

• HTTP
– cookies

• TLS (optional)
• TCP > IP > link layer

47

Hypertext Transport Protocol (HTTP)
• HTTP is a request/response protocol for communicating

between web clients and web servers.
• A web client sends a request to a particular web server

for a particular resource (identified by a URL) and the
web server responds with some kind of data (often HTML
data).

Web
Client

Web
Server Resources

Request

48

HTTP Request Message
• Given http://www.example.com/index.html
• Send TCP/IP message to www.example.com on port

80 containing the following:

GET /index.html HTTP/1.1 Request method and
resource

Date: Mon 12 Jul 2021 21:12:55 GMT
General headers

Connection: close

Host: www.example.com

Request headers
Accept: text/html, text/plain

User-Agent: Mozilla/5.0 (Windows NT 6.1)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/41.0.2228.0 Safari/537.36

49

http://www.myfavouriteamazingsite.com/index.html

HTML forms: the GET method

• The GET method sends
encoded data appended to
the URL string.

• The data is separated from
the URL by a ‘?’

• The encoded data and any
path information are placed
in the CGI environment
variables QUERY_STRING
and PATH_INFO.

GET /cgi-
bin/pizzaweb.cgi?order=152&deliver
y=Delivery&size=large&toppings=bee
f&toppings=pepperoni&Submit=Ord
er+pizza HTTP/1.0

HOST: www.example.com

…

HTML forms: the POST method

• The POST method sends
encoded data in the
body section of the
request.

• Data in the body is
encoded in the same
way as in the GET
method.

POST /cgi-bin/pizzaweb.cgi HTTP/1.0

Host: www.example.com

Content-Length: 96

Content-Type: application/x-www-
form-urlencoded

order=152&delivery=Delivery&size=l
arge&toppings=beef&toppings=pepp
eroni&Submit=Order+pizza

Cookies
Order
Page

(1st Run)

Order
Page

(2nd Run)

Order
Page

(3rd Run)

Browser

2. Response
Set-Cookie: Data

1. Request
4. Request

Cookie: Data
5. Response

6. Request
Cookie: Data

7. Response

3. Save to disk

52

Sessions

• A sequence of requests and responses from one
browser to one (or more) sites.
– Session can be long or short:

• Google advertising tracking: 1+ years
• Google Mail login: 2 weeks

• Without sessions:
– Users would have to constantly re-authenticate

• With sessions:
– Authenticate user once
– All subsequent requests are tied to user

53

Session tokens

1. Server gives each user a random token when
they first visit that website
– Server stores link between user and token in a

database

2. User re-sends that token every time they
visit that website
– Server looks up which user that token

corresponds to

54

Session tokens
Browser Web Site

GET /index.html

send new anonymous session token

GET /books.html
attach anonymous session token

POST /do-login
Username & password

elevate to a logged-in session token

POST /checkout
attach logged-in session token

check
credentials

validate
token

55

OWASP Top Ten
(2017 Edition)

A1: Injection

A2: Broken
Authentication

and Session
Management

A3: Sensitive Data
Exposure

A4: XML External
Entity (XXE)

A5: Broken Access
Control

A6: Security
Misconfiguration

A7: Cross-Site
Script (XSS)

A8: Insecure
Deserialization

A9: Using
Components with

Known
Vulnerabilities

A10: Insufficient
Logging &

Monitoring

http://www.owasp.org/

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

My classification:

Web-specific issue

General programming issue

General security management issue

56

http://www.owasp.org/
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

Session
hijacking

Attacker
waits for
user to login

Attacker
obtains user’s
session token

Attacker
hijacks session

Threats against session management
• Session token stealing:
– Attacker can learn the

session token somehow
• If it's transmitted over an

unencrypted connection
• If it can be stolen through

a cross-site scripting
attack

• If it can be stolen through
malware

– Attacker sends that value
in its own headers to
access the session

https://www.owasp.org/index.php/Session_hijacking_attack

58

https://www.owasp.org/index.php/Session_hijacking_attack

Threats against session management
• Session token prediction/guessing:

– Attacker can predict the value of the session token that a user
will receive

– Attacker sends that value in its own headers to access the
session

– Solution: use cryptographically-strong high-entropy
session tokens

https://www.owasp.org/index.php/Session_Prediction

59

https://www.owasp.org/index.php/Session_Prediction

Sessions
• A sequence of requests and responses from one

browser to one (or more) sites.

• Session can be long or short:
– Google advertising tracking: 1+ years
– Google Mail login: 2 weeks

• Without session management, users would have to
constantly re-authenticate.
– Authorize user once
– All subsequent requests are tied to user

• Web application environments — ASP, PHP, etc. — or
middleware provide session handling routines.

OWASP Top Ten
(2017 Edition)

A1: Injection

A2: Broken
Authentication

and Session
Management

A3: Sensitive Data
Exposure

A4: XML External
Entity (XXE)

A5: Broken Access
Control

A6: Security
Misconfiguration

A7: Cross-Site
Script (XSS)

A8: Insecure
Deserialization

A9: Using
Components with

Known
Vulnerabilities

A10: Insufficient
Logging &

Monitoring

http://www.owasp.org/

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

My classification:

Web-specific issue

General programming issue

General security management issue

61

http://www.owasp.org/
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

Injection attacks

• Injection attack: untrusted data is dynamically
included in a command in an unsafe way

• Most common form:
– SQL injection attacks on database commands

• Other examples:
– shell command injection
– Javascript eval() code injection

62

Shell command injection attacks
• Imagine a shell script allows a user to upload a file

and rename the file

<?php

$tmpFilename =
$_FILES["user_image"]["tmp_name"];

$userFilename =
$_POST["user_filename"];

exec("mv $tmpFilename $userFilename");

• What happens if the
user supplies a malicious
filename?

my.jpg; rm -rf /

• Command becomes:
mv tmp.jpg my.jpg; rm -rf /

63

SQL: Structured Query Language

• Widely used database query language

• Fetch a set of records
– SELECT * FROM Person WHERE Username='Vitaly'

• Add data to the table
– INSERT INTO Key (Username, Key) VALUES ('Vitaly',

3611BBFF)

• Modify data
– UPDATE Keys SET Key=FA33452D WHERE PersonID=5

• Query syntax (mostly) independent of vendor

64

SQL Injections

• Exploits vulnerabilities in how user input is
inserted into database commands

• Attacker can execute arbitrary commands in
the database

• Worse effects if the application uses an over-
privileged account to connect to the database

65

Web-based login sequence

Enter
username

&
password Web

server
Web

browser DB

SELECT *
FROM USERS
WHERE

uname='$user' AND
password='$password'

Empty or non-empty results

66

Web-based login sequence

Enter
username

&
password Web

server
Web

browser DB

SELECT *
FROM USERS
WHERE

uname='smith' AND
password='potato'

67

Web-based login sequence

Enter
username

&
password Web

server
Web

browser DB

SELECT *
FROM USERS
WHERE

uname=''; DROP
TABLE USERS;--' AND
password='potato'

68

Little Bobby Tables
http://xkcd.com/327/

69

http://xkcd.com/327/

Live example: IBM demo site

http://demo.testfire.net/

70

http://demo.testfire.net/

Reconnaissance: try to make an error
username: alice password: 123'456

71

Break and enter:
username: admin password: ' OR 1=1;--

72

SQL injections can
be used to...

SQL
Injection

Login

Steal data

Execute
shell

commands

Destroy
data

Change
data

73

Attack: using SQL injection to steal
data from other databases

• User gives username
' AND 1=0 UNION SELECT cardholder,
number, exp_month, exp_year
FROM creditcards;--

• Results of two queries are combined.
• Empty table from the first query is displayed

together with the entire contents of the credit
card database.

74

Attack: using SQL injection to run shell
commands

• User gives username
'; exec cmdshell 'net user badguy
badpwd';--

• Web server executes query
set UserFound=execute(

"SELECT * FROM UserTable WHERE
username= ''; exec cmdshell 'net
user badguy badpwd';--...);

• Creates an account for badguy on DB server.

75

Attack: using SQL injections to
create/modify accounts

• Create new users
'; INSERT INTO USERS
('uname','passwd')
VALUES ('hacker','38a74f');--

• Change email address (to run email-based
password reset)
'; UPDATE USERS SET
email='hcker@root.org'
WHERE email='victim@yahoo.com';--

76

Example vulnerable PHP code
1. <?php
2. $db = mysql_connect(“localhost”, “root”, “password”);
3. mysql_select_db(“Shipping”, $db);
4. $id = $HTTP_GET_VARS[“id”];
5. $qry = “SELECT ccnum FROM cust WHERE id = $id”:
6. $result = mysql_query($qry, $db);
7. if ($result) {
8. echo mysql_result($result, 0, “ccnum”);
9. } else {
10. echo “No result!” . Mysql_error();
11. }
12.?>

77

Cause of SQL injection

• Root cause: data is interpreted as command.

• Control characters (such as ' in SQL) provide separation
between data and commands.

• Any application that has the following pattern is at risk
of SQL injection:
1. Takes user input.
2. Does not check user input for validity.
3. Uses user input data to query a database.
4. Use string concatenation or string replacement to build

the SQL query or uses the SQL exec command.

78

Prevention techniques
• Main idea: need to stop control characters in data from being

interpreted as delimiting commands.

• Approach 1: filter control characters
– Hard to do reliably
– Makes the O'Connor family sad

• Approach 2: escape control characters
– E.g. replace O'Connor -> O\'Connor
– Hard to do reliably

• Approach 3: use variable binding
– Write "prepared statements" with placeholders
– Use built-in subroutines that bind data to placeholders in a guaranteed

safe way

79

Prepared statement: PHP
<?php
$db = ...;
$query = "SELECT email FROM users WHERE id=:id";
$stmt = $db->prepare($query);
$stmt->bind_param(":id", $_POST["id"]);
$stmt->execute();
…

This code
binds values

to the
placeholders

in the
prepared
statement

80

Fundamentals of Network Security
• Basics of Information Security

– Security architecture and infrastructure; security goals (confidentiality, integrity, availability,
and authenticity); threats/vulnerabilities/attacks; risk management

• Cryptographic Building Blocks
– Symmetric crypto: ciphers (stream, block), hash functions, message authentication codes,

pseudorandom functions
– Public key crypto: public key encryption, digital signatures, key agreement

• Network Security Protocols & Standards
– Overview of networking and PKI
– Transport Layer Security (TLS) protocol
– Overview: SSH, IPsec, Wireless (Tool: Wireshark)

• Offensive and defensive network security
– Offensive: Pen-tester/attack sequence: reconnaissance; gaining access; maintaining access

(Tool: nmap)
• Supplemental material: denial of service attacks

– Defensive: Firewalls and intrusion detection
• Access Control & Authentication; Web Application Security

– Access control: discretionary/mandatory/role-based; phases
– Authentication: something you know/have/are/somewhere you are
– Web security: cookies, SQL injection
– Supplemental material: Passwords

More aspects of network security

• Network equipment
• More web application vulnerabilities
• Honeypots
• Virtual Private Networks
• Content filters, anti-virus, proxies
• Denial of service resistance
• Security of outsourced/cloud resources

Fundamentals of Network Security

• Assessment:
– 4 practical hands-on exercises with network and

application security, with a few questions to
submit from each

– Due Thursday August 12

SUPPLEMENTAL MATERIAL:
PASSWORDS

Knowledge-based authentication:
Something you know

• Characterized by secrecy or obscurity
– Should be something only that subject knows

• Commonly used:
– Passwords:

• Especially user-selected reusable passwords
– Responses to questions:

• your birth date, mother’s maiden name, favourite food, pet’s name,
etc.

• Advantages include:
– Readily accepted by users
– Low cost implementation

85

Reusable passwords

• Most commonly used authentication mechanism

• User provides:
– username or ID, and
– password

• System has prior stored value to compare with
– Successful provision of required value authenticates

user to system

• Requirement: system must store the values used
to verify the passwords for all system users

86

Passwords

• Passwords are human-memorizable strings
that are used for authentication

87

Common attacks against passwords

• Attacker steals a password from a user
(via malware, breaking kneecaps, …)

• Attacker guesses a user’s password
– Through online guessing

• Attacker steals a password database from a
server
– Then uses offline computation

• Hard-coded passwords

88

Security recommendations for passwords

• Use a ‘strong’ password
– Aspects include minimum length, character set, prohibiting use

of identifiers or known associated items as passwords, limitation
on length of time before change required

• Store password securely
– Not on a post-it note on your monitor (?)

• Don’t share password with other entities
– Colleagues, friends, family, etc.

• Don’t use same password for multiple systems
– Different unrelated passwords for work/study, online banking,

social media, etc.

89

Strategies for selecting reusable passwords

User-
selected

Computer-
generated

90

User-selected reusable passwords

• Security policy should include:
– User training

• Explain importance of choosing ‘strong’ passwords.
– Password selection guidelines

• What are the characteristics of ‘good’ passwords?

• Unlikely to be effective in most organisations
– Especially if large user population or high turnover of

users.
– Some users ignore guidelines, or can’t select ‘strong’

passwords.
– Many choose passwords that are too short and very

easy to guess.

91

RockYou.com password breach

• RockYou.com, a social media gaming site, had
their password database compromised in
2009. Passwords were stored in plaintext.

• First large-scale password breach with publicly
analyzed datasets

• # of accounts: 32.6 million
• # of different passwords: 14.3 million

92

RockYou.com password statistics
• About 30% of passwords

length less than or equal
to six characters.

• Nearly 50% of users used
names, slang words,
dictionary words or trivial
passwords (consecutive
digits, adjacent keyboard
keys, and so on).

• Entropy of password set:
21.1 bits

Top 10 passwords:
1. 123456
2. 12345
3. 123456789
4. password
5. iloveyou
6. princess
7. 1234567
8. rockyou
9. 12345678
10. abc123

http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf

93

http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf

RockYou.com password statistics

Only lower case
42%

Only numeric
16%

Only upper case
1%

Mixed letters and numbers
37%

Contains special characters
4%

94

RockYou.com password statistics

• The top __ passwords covered __% of user
accounts:
– 1 0.9%
– 5 1.7%
– 10 2.1%
– 100 4.6%
– 1000 11.3%
– 10000 22.3%

• An attacker could break into a random account in
a single guess with probability around 2-13 (1 in
8000).

95

Computer-generated reusable
passwords

• Computer generated passwords avoid the problem of users
choosing weak passwords

• But have another security problem:
– Passwords consisting of random characters difficult for users to

remember, so they may write them down.

• Various mechanisms for generating human-friendly
passwords:
– Syllabic word-like: FIPS PUB 181

http://csrc.nist.gov/publications/fips/fips181/fips181.pdf
– Sequences of words:

• Diceware: http://world.std.com/~reinhold/diceware.html
• xkcd: http://correcthorsebatterystaple.net, https://xkpasswd.net/s/

96

http://csrc.nist.gov/publications/fips/fips181/fips181.pdf
http://world.std.com/~reinhold/diceware.html
http://correcthorsebatterystaple.net/
https://xkpasswd.net/s/

https://xkcd.com/936/

97

https://xkcd.com/936/

Entropy: a (somewhat okay) measure
of password strength

• Entropy measures the uncertainty in values
generated from a random process

• Think of passwords being generated from a
random process with a certain distribution

• Predicts the number of guesses we have to
make to learn the password

Not ideal measure of password guessing difficulty, but reasonable good (see
http://jbonneau.com/doc/2012-jbonneau-phd_thesis.pdf for detailed analysis)

98

http://jbonneau.com/doc/2012-jbonneau-phd_thesis.pdf

Entropy: a (somewhat okay) measure
of password strength

• Suppose a process X generates n values x1, …,
xn with probabilities p1, …, pn

• Formula for entropy of process X:

– Or alternatively:

H(X) = �
nX

i=1

pi log2(pi)

H(X) = �p1 log2(p1)� p2 log2(p2)� · · ·� pn log2(pn)

99

Entropy: a (somewhat okay) measure
of password strength

• Simple way of thinking about it:

– If a password is chosen uniformly at random from
a set of size 2n,

– then its entropy is n bits,
– and we require around 2n-1 guesses on average to

find it.

100

https://xkcd.com/936/

RockYou.com: 21.1 bits of entropy

101

https://xkcd.com/936/

Example: calculating entropy

• Suppose we have a dictionary of 16 words.

• Scenario 1: Passwords generated uniformly at
random from the dictionary
– i.e., each password is equally likely

• Scenario 2: Passwords were NOT generated
uniformly at random from the dictionary
– i.e., some passwords more likely than others

102

Example: calculating entropy
Scenario 1: Equally likely passwords

Password (xi) Probability (pi)
apple 1/16

apricot 1/16

banana 1/16

blueberry 1/16

cherry 1/16

durian 1/16

grape 1/16

lemon 1/16

lime 1/16

mango 1/16

orange 1/16

peach 1/16

pineapple 1/16

raspberry 1/16

strawberry 1/16

watermelon 1/16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ap
pl
e

ap
ric
ot

ba
na
na

bl
ue
be

rr
y

ch
er
ry

du
ria
n

gr
ap
e

le
m
on

lim
e

m
an
go

or
an

ge
pe
ac
h

pi
ne
ap
pl
e

ra
sp
be
rr
y

st
ra
w
be
rr
y

w
at
er
m
el
on

103

Example: calculating entropy
Scenario 1: Equally likely passwords

Password (xi) Probability (pi)
apple 1/16

apricot 1/16

banana 1/16

blueberry 1/16

cherry 1/16

durian 1/16

grape 1/16

lemon 1/16

lime 1/16

mango 1/16

orange 1/16

peach 1/16

pineapple 1/16

raspberry 1/16

strawberry 1/16

watermelon 1/16

H(X) = �
16X

i=1

pi log2(pi)

= �
16X

i=1

1

16
log2

✓
1

16

◆

= �16 · 1

16
log2

✓
1

16

◆

= �1 · log2
✓

1

16

◆

= �1 · log2
�
2�4

�

= 4

104

Example: calculating entropy
Scenario 1: Equally likely passwords

Password (xi) Probability (pi)
apple 1/16

apricot 1/16

banana 1/16

blueberry 1/16

cherry 1/16

durian 1/16

grape 1/16

lemon 1/16

lime 1/16

mango 1/16

orange 1/16

peach 1/16

pineapple 1/16

raspberry 1/16

strawberry 1/16

watermelon 1/16

If you are trying to guess
the password, you need to
make about

24-1 = 8 guesses
on average

105

Example: calculating entropy
Scenario 2: Non-uniform passwords

Password (xi) Probability (pi)
apple 1/4

apricot 1/48

banana 1/48

blueberry 1/48

cherry 1/48

durian 1/4

grape 1/48

lemon 1/48

lime 0

mango 1/4

orange 1/48

peach 1/48

pineapple 1/48

raspberry 1/48

strawberry 1/48

watermelon 1/48

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ap
pl
e

ap
ric
ot

ba
na
na

bl
ue
be

rr
y

ch
er
ry

du
ria
n

gr
ap
e

le
m
on

lim
e

m
an
go

or
an

ge
pe
ac
h

pi
ne
ap
pl
e

ra
sp
be
rr
y

st
ra
w
be
rr
y

w
at
er
m
el
on

106

Example: calculating entropy
Scenario 2: Non-uniform passwords

Password (xi) Probability (pi)
apple 1/4

apricot 1/48

banana 1/48

blueberry 1/48

cherry 1/48

durian 1/4

grape 1/48

lemon 1/48

lime 0

mango 1/4

orange 1/48

peach 1/48

pineapple 1/48

raspberry 1/48

strawberry 1/48

watermelon 1/48

H(X) = �
16X

i=1

pi log2(pi)

= �3 · 1
4
log2

✓
1

4

◆

� 12 · 1

48
log2

✓
1

48

◆

� 0

⇡ �3

4
log2

�
2�2

�

� 12

48
log2

�
2�5.59

�

=
3

4
· 2 + 12

48
· 5.59

= 2.8975

107

Example: calculating entropy
Scenario 2: Non-uniform passwords

Password (xi) Probability (pi)
apple 1/4

apricot 1/48

banana 1/48

blueberry 1/48

cherry 1/48

durian 1/4

grape 1/48

lemon 1/48

lime 0

mango 1/4

orange 1/48

peach 1/48

pineapple 1/48

raspberry 1/48

strawberry 1/48

watermelon 1/48

If you are trying to guess
the password, you need to
make about

22.8975-1 = 3 guesses
on average

108

Entropy

• If some words are more likely than others,
there's less uncertainty
=> less entropy
=> easier to guess

• Entropy of passwords is a combination of
length of password and randomness of each
part of the password

109

Computer-generated randomness

• Pseudorandom number generator: expands a
short truly random seed into a long
pseudorandom string

• For security, seeds should be sufficiently
unpredictable

• In a good PRNG, should be hard to predict
output without knowing the seed

110

Computer-generated randomness

• Most programming languages have two types of
PRNGS:
– non-cryptographically strong PRNG
– cryptographically strong PRNG

• Java: Random versus SecureRandom
• Python: random versus SystemRandom
• C: rand() versus (need to use a library)

• Always use a cryptographically strong PRNG for
password generation

111

SUPPLEMENTAL MATERIAL:
STORING PASSWORDS ON SERVERS

Login and registration, take 1
Registration

1. Store username and
password in database

Login

1. User supplies username
and purported password

2. Look up username and real
password in database

3. Check if purported
password = real password

113

https://haveibeenpwned.com/PwnedWebsites

114

https://haveibeenpwned.com/PwnedWebsites

Storing passwords securely

• Security requirements for system files storing
passwords:
– C: Can non-administrators read the password

database? What useful information is in there?
– I: Can the password file be modified? Can

unauthorised modification be detected?
– A: Need to be available when required for verification

• Note: no non-repudiation if password is known to
system (or to others outside the system)

115

Confidentiality of passwords

• Storage (on authentication server)
• Transmission (between client and server over

network)
• Use (display on screen when being entered?)

116

Login and registration, take 2
Registration

1. Store username and an
encrypted version of the
password in database

Login

1. User supplies username
and purported password

2. Look up username and
encrypted password in
database

3. Decrypt the stored
password to recover the
real password

4. Check if purported
password = real password

Problem: if someone learns
the key, they can decrypt the
database and recover all the
passwords.

117

Login and registration, take 3
Registration

1. Store username and an
irreversible
transformation ("hash") of
the password in database

Login

1. User supplies username
and purported password

2. Look up username and
hash in database

3. Apply same irreversible
transformation to the
purported password

4. Check if hash of purported
password = hash of real
password

118

Hash functions
• A hash function is a function H that maps arbitrary-

length binary strings to fixed-length binary strings.

Hx H(x)

Arbitrary length input Fixed length output

119

Cryptographic hash function

• A cryptographic hash function should be

– hard to invert: given an output y, it should be hard to
find x such that H(x)=y
• a.k.a. "one-way", "pre-image resistant"

– collision-resistant: it should be hard to find two
distinct x and x' such that H(x) = H(x')

– pseudorandom: H(x) should “look random”
• Implies that if you make a small change in the input, it

should make a large change in the output

120

Standardized cryptographic
hash functions

General purpose

• MD5 (1992)
– Collision resistance fully

broken

• SHA-1 (1995)
– Collision resistance broken

• SHA-2 family: SHA-256/SHA-
512 (2001)
– Unbroken so far

• SHA-3 family (2015)
– Unbroken so far

Password-specific hash
functions

• PBKDF2 (2000)
– Widely used; fairly secure

• bcrypt
• scrypt
• Argon2 (2015)

– Best available approach

121

Hash functions

• SHA-1: maps arbitrary length binary string
inputs to 160-bit string outputs

SHA-1("potato") = 3e2e95f5ad970eadfa7e17eaf73da97024aa5359
SHA-1("potatO") = 5e0d1a9c2170e188c667276e1d9ed2567c754ba9

122

Using password hashes for login

Instead of storing the user’s password “potato”,
store the hash of the password:

• SHA-1("potato") = 3e2e95f5ad970eadfa7e17eaf73da97024aa5359

At login time:
1. take the the password the user typed,
2. hash it,
3. see if it matches the hash stored in the

database.

123

Using password hashes for login
Benefits

• Compromise of the
database doesn’t reveal the
user’s password

• Almost no overhead for
storage and login

Drawbacks

• Can’t recover passwords for
users who forget

• Attackers could create a
table of password hashes to
compare against database

• Can learn if two users use
the same password (even if
you don't know what it is)

124

Password hash cracking

• Suppose you learn that the hash of Alice's
password is 3e2e95f5ad970eadfa7e17eaf73da97024aa5359
– Maybe by a database breach

• Goal: find Alice's password

125

Brute force attack
• Search through all

possible passwords

• Possibly ordered by
frequency based on
known human-picked
password distributions

• How big is a password
space?
– A-Z=26, a-z=26, 0-9=10
– 8 character password
– 628 = 247.6 possible

passwords

• How much can one
computer do?
– On a single computer, this

would take around 1 year
– < $200 on Amazon
– < $50 on a botnet

126

Attacking using hash tables

• Hash table: A table containing hashes of
many/all possible passwords

• Would allow an attacker with the password
database to quickly find the user’s password.

• More work to crack one password hash, but
can reuse work ("precomputation") to crack
many password

127

Attacking using hash tables
• Hash tables allow for instant cracking of a password

hash
• But require a massive amount of storage
– password set: 8 character passwords, 26+26+10=62

characters
– 628=247.6 passwords
– SHA-1 hash table would take 160 bits = 20 bytes per

password
– approx. 252.4 bytes = 6 petabytes

• Can we find a time-memory trade-off where we can
store less, but not increase time too much?

128

Attacking using rainbow tables

• Rainbow tables are an example of a time-space
tradeoff using hash chains.

• Ophcrack and RainbowCrack are examples of software
that can crack passwords using rainbow tables.

• RainbowCrack example:
– 1-8 character mixed-case alphanumeric password
– 160GB rainbow table
– time to crack 1 password using CPU: approx. 26 minutes
– time to crack 1 password using GPU: approx. 103 seconds
– success rate: 99.9%

129

Constructing a rainbow table
1. Pick a random password
2. Construct a hash chain (hash with H, map hash back

to the password space with R)
3. Store the start and end of the chain
4. Repeat many times

aaaaa 281DAF40 sgfnyd 920ECF10 kiebgt 41CF3ADE lrms1r
H R H R H R

aaaab 3FC1A597 zimms 45CF9317 bittle 963A9B9 parson
H R H R H R

aaaac 419EF0C1 omgcp CCC980BF qwirxz 451FBA03 linx5ru
H R H R H R

130

Using a rainbow table
1. Given a hash
2. Construct a hash chain from that hash (R, H,

R, H, …), each time checking to see if the
value matches any stored tail.

3. Once tail is found, take the corresponding
head, and construct a hash chain (H, R, H, R,
…) until you find your hash

4. The one immediately before is the password
you seek.

aaaab 3FC1A597 zimms

45CF9317 bittle 963A9B9 parson

Rainbow table

Head Tail

aaaaa lrms1r

aaaab parson

aaaac linx5ru

45CF9317

H R H

R H R

45CF9317
Rainbow tables only work if
the database stores the hash
of the password
H(password).

131

Login and registration, take 4
Registration

1. Pick a random ≥80-bit salt
2. Store username, salt, and

H(password, salt) in
database where H is a
cryptographic hash
function

Login

1. User supplies username
and purported password'

2. Look up username, salt,
and hash in database

3. Check if H(password', salt)
= stored hash

132

Benefits of salting

• Salting protects against rainbow tables since
you would need a different table for each salt.

• Salting makes brute-force attacks harder
because you can’t reuse the work from one
attack on another attack.

133

Password hardening
• You can slow down brute-force attacks even more by

hashing the password multiple times.
• Instead of storing

H(salt, password)
store

H(H(H(…H(salt, password)))
with 10000 hash function applications.

• My computer can apply SHA1 3190046 times per second
• So 10000 times only takes in 0.003 seconds

• Doesn’t slow down login much.
• But it does slow down brute-force attacks by a factor of

10000.

134

Password hardening functions

• PBKDF2 (2000)
– Widely used; fairly secure

• bcrypt
• scrypt
• Argon2 (2015)
– Best available approach

135

Login and registration, take 5
Registration

1. Pick a random ≥80-bit salt
2. Store username, salt, and

H(password, salt) in
database where H is a
password hardening
function

Login

1. User supplies username
and purported password'

2. Look up username, salt,
and hash in database

3. Check if H(password', salt)
= stored hash

136

Passwords on Unix

• /etc/passwd stores the list of accounts but
typically not the hashed passwords; this is
because /etc/passwd is world-readable

• /etc/shadow or /etc/master.passwd stores
the hashed, salted passwords; this file is readable
only by root

• Typically uses the crypt(3) algorithm with a
particular hash function; e.g., default on Ubuntu
11.04 is SHA-512 with an 8-character salt

137

Passwords on Windows
• Up to and including Windows XP, Windows hashed passwords using

the LM (LAN Manager) hash algorithm which did not use a salt.
– Rainbow tables can be used to break LM hashes.

• Remote authentication up to and including Windows XP used a
protocol called NTLM which required storing an additional unsalted
NTLM hash.
– Rainbow tables can be used to break NTLM hashes.

• LM disabled by default in Windows Vista and above.
• I think modern Windows still stores NTLM hashes, but it's hard to

get an exact confirmation.

• Windows 8 stored encrypted (but not hashed) passwords in a file
that all users had the key to decrypt

https://www.guidingtech.com/61991/cracking-windows-10-password-prevent/
https://hotforsecurity.bitdefender.com/blog/windows-8-stores-logon-passwords-in-plain-text-3914.html

138

https://www.guidingtech.com/61991/cracking-windows-10-password-prevent/
https://hotforsecurity.bitdefender.com/blog/windows-8-stores-logon-passwords-in-plain-text-3914.html

Passwords on Mac OS X

• Up to Mac OS X 10.2, unsalted hashes were
stored in the NetInfo database, which anyone
could read.

• In Mac OS X 10.3, unsalted hashes and LM hashes
were stored in a shadow file.

• In Mac OS X 10.4-10.6, salted hashes were stored
in a shadow file. LM hashes are not stored by
default, but are turned on when Windows File
Sharing is enabled.

• In Mac OS X 10.8 and higher, salted password
hashes (using PBKDF2 with SHA512) are stored in
a shadow file.

http://www.dribin.org/dave/blog/archives/2006/04/28/os_x_passwords_2/
http://www.defenceindepth.net/2011/09/cracking-os-x-lion-passwords.html

139

http://www.dribin.org/dave/blog/archives/2006/04/28/os_x_passwords_2/
http://www.defenceindepth.net/2011/09/cracking-os-x-lion-passwords.html

Passwords in web applications

• Since there are no standard protocols for
authentication in web applications, it’s up to
the application itself to decide how to store
passwords.

• SQL databases (e.g., MySQL) typically have
MD5(…) and SHA1(…) functions built in, but
developers still need to do salting/hardening
in the application code.

140

How can a remote user prove that
they know their password?

• Send the password over an unencrypted channel
– Bad.

• Send the password over an encrypted channel.
– Okay, but only if the user knows that the encrypted channel is with the right

server.

• Send a hash of the password over an encrypted channel.
– Good, but still vulnerable to rainbow tables.

• Send a salted hash of the password over an encrypted channel.
– Better, but still vulnerable to brute force attacks (called offline dictionary

attacks).

• Use a password authenticated key exchange protocol.
– Very good, secure against dictionary attacks.
– Not widely implemented (and many have patent restrictions).

141

Default and hard-coded passwords
• Many password-protected

vendor-supplied software and
hardware has default passwords.

• It is often that users are not
prompted to change the
passwords on setup.

• Or even that it is not possible to
change the default passwords
(they are hard-coded).

• “Well over 50 percent of the
control system suppliers” hard-
code passwords into their
software or firmware.

– Joe Weiss, Protecting Industrial
Control Systems from Electronic
Threats

• Databases of default
passwords:
– http://www.cirt.net/passwords

• Hard-coded Siemens
WinCC SCADA passwords:
– http://www.wired.com/threat

level/2010/07/siemens-
scada/

• Samsung printers:
– http://www.kb.cert.org/vuls/i

d/281284

142

http://www.cirt.net/passwords
http://www.wired.com/threatlevel/2010/07/siemens-scada/
http://www.kb.cert.org/vuls/id/281284

